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ABSTRACT

The Llewellyn relativistic coefficients have been solved in the range

0c < y , corresponding to 2.115 x 105 volts. These results are. applied

to high-frequency space-charge-limited diodes and to klystrons in which

space-charge effects are not considered. In such klystrons, the range can

be extended without limit.

The current and velocity modulation and the diode impedance are

derived for high-frequency space-charge-limited diodes. Her.e the maximum

'5diode resistance at 2.115 x 10 volts changes only 0.3 per cent in comparison

to th4,honrelativistic case.

For the klystron case, velocity modulation and beam-loading admit-

tance are calculated at the first gap and are found to change from the non-

relativistic case by a large amount. The current and velocity behavior in

the drift region are derived, and the transadmittance for the klystron is also

given.

It is concluded that the relativistic effect is.small for high-frequency

space-charge-limited diodes, but significant for klystron tubes'

-vii -



I. INTRODUCTION

Llewellyn1 1 2 solved the parallel-plane problem by a continuous in-

tegration procedure' and applied it to tubes. R.ydbeck3 got the same results
4

later by the space-charge wave approach. Then Olving modified it for

the relativistic expressions for a-c quantities, such as the electronic field,

the electronic velocity, and the conduction current density. He introduced

the wave potential ir to simplify the expressions. The details of Olving.'.s

work are given in Appendix A.

It is inevitable that modern microwave electronics will be directed

toward.high-power devices, thus requiring knowledge of their relativistic

behavior. In the following analysis, it is assumed that the electron motion

is in the axial direction only; in other words, the longitudinal magnetic field

is so strong that transverse motion of the beam electronics may be consid-

ered negligible. Although this magnetic force is rather important at high

velocity, we are not going to -concern ourselves with it in this study. In

addition, small-signal conditions are assumed to hold throughout.

The framework of this thesis is to solve for the wave potential w
22 1

first under the assumption v /c < -- then derive the Llewellyn relativ-
0 2

istic coefficient sets by the various relativistic a-c expressions that

formed the basis of "wave theory. " Then in Chapter IV we apply these

general expressionsto the following special problems: (1) space-charge-

limited diode with high voltage, and (2) the relativistic klystron gap, and

then study the behavior of impedance, beam loading admittance, and velocity

and current modulations. The evaluation of w in Chapter III is under the

-1-



assumption v2 /c 2 << 0.5, corresponding to 2. 115 x TO5 volts,,but in the

application of klystron gaps we can extend it without limit,as is done in

Chapter V.

-2-



II. SUMMARY OF IMPORTANT FORMULAS

In this chapter, the important formulas are summarized-. The

details of the derivations will be given in Appendix A.

A. Important A-C Relations

Impo~rtant a-c relations such as conduction current, electric field,

velocity, and applied voltage between the gaps are expressed as follows:

i2 -- je e
P2 pz • ,(1)

ee

JE1  =- -(c -W 1 =JE jc (2

d-
I e -je 1

Vl jT (3)

ol 00 P7' e-O 'n

d0 0 0 0

E d -. dO e 'o eo 1  Trd d4

c~~ I j•"cfV- -.'
e e P

2 jp e d8o (4)
J(AE d - f e d9

e oJ

where d is the distance between the electrodes, and 0 is the correspond-
d 0

ing d-c transit angle f Pe dz, and
0
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0 d

0 = dz = f dz = d

01 0

where

3/2
f( Koýtr = fc1 -jice3G) -,dO+c 2  1 5)

oe

The integration constants c 1 and c2 are to be determined from the a-c

boundary conditions of the velocity and conduction current,

B. Important D-G-Relations 2//

In order to ýsolve Equation (5), one has to express ( 2 0 as

a function of e from d-c relations. The energy relation in the relativistic

region will be

Kc 2/0 m eV ,

ee

or

1 I/Z -- ,(6)
1".i 7 22O Vn

where V is the potential difference and V m0 c 2/e = 5' ix 105 volts.n o

This can also be reduced to

1

K /20 [n (+~../ (7)
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Another important d-c relation in Equation (A. 22) is

( K e
01

1--

Since

0p 0
P3 m E v 2
"e 0 0 ,0

then

3 eJ
W 00
v3 m f W3

o o o

is independent of v and z . After Equation (A. 22) is integrated twice,
0

apply the boundary conditions of Equation (7), i..e. , at e = 0 , V Vb

and at 0= 0 , V = V :.
a

11/2

I/ T 2+V V

K2  0 0 [ +

Pe -S(e)=A82 +Be+D 
. (8)Ii

P-5



This relation %rvil be used often in later chapters. In Equation (8)

A 1  P,2(9

A Zp
23

Pee

V_ n3 n'

(10)

D Va 1+ýa ]1/2 (1

K - in term s of S

From Equation (8) , we can solve 1/P4e and ( /)

1 SG 2)

Te (I + K2 S)
0

l/
"0 ( / 13)

\ e! (I+ K s .)

Since S is a known function of 0 it would now be possible to

.eliminate Pe and - from our a-c expressions by the use ofliminat(e P/n

e
Equations (12) and .(I13). And finally we have

d f f0 d .O (14)

S~-6-

Pe2:)/
0 1+K



III. EVALUATION OF WAVE POTENTIAL iT AND LLEWELLYN'S
RELATIVISTIC COEFFICIENTS

In order to get the complete set of Llewellyn coefficients with the

first-order relativistic correction, we have to solve for the wave potential

ir first, which is essentially a current dimension. The derivation of the

nonrelativistic Llewellyn's coefficients using this wave potential w is

given in. Appendix B. For the relativistic case

/ 1/

S= cI jic e). - )/ d6 + c (5)

12 2Sif

K v
<< or- << 1

c

the integral will be reduced to

rr = ftcl - jic eji) d8 + c,

C ce-i ej +c (15)+

This is the nonrelativistic wave potential as given in Appendix B.
SK

2 \3/Z
But when the factor 1- 0) is present in the integral, it is

more difficult to integrate than the nonrelativistic case. Since by Equation (13)

. 1/2

0,(1

-7-



where S is given by Equation (8), then

K K- 1/2

K
2

7.. •.
Pep

If the condition Ko/eP2 < 0.5 is assumed, the preceding equation may be ex-0 e

22 2 2
panded by binomial theorem since K SI < 1 as K /P3 < 0.5. This limita-

5
tion, of velocity corresponds to 2.115. x 10 v. Now, we should bear in mind

that the coefficients we are going to derive are valid up to 2.115 x 10 5v, but

that the correction factor of relativistic effect is only of first order:

iT (~ .. ieS8) (~3/2 dGc

fJT jice~ (i-Ž ~~ dO + c2

22

P 2

Substituting S = AeG +.BG + D in the previous equation gives

e._3 2K l[Ze AB 84 23O
" = cl0"ic1 -- c [A- +-G + (B +2AD)-T-+BDG2+D2 + c

e

3 2K~ fAZe4je~ (4A2 -j2AB)G 3 ej 0 + [lA+ B-j(B +2AD)] G2ej0

203/c
+J ~j" 2

+ [.-z4A + jiZAB + 2(BI + ZAD)K - jBD)] + e0

+ [-j24A - l2AB + Zj(BI + 2AD) + Bd9 -+iD] e}2

= c A 1- e~- Kc 1  2A + 0 . ,(6

I -icejO 3, 2K B 4 .1- c SA C +j 3_ K5 2 T 31

2 00 2  j- i

-8-
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where

2 0 A AB4 2 2 2S A-+-- +(B + 2AD) -- + BDe +D , (17)A -5 2 3

T = {jA~e4 ee+.(4A2- j2AB) eJe + [j12A 2 + 6AB - j(B2 + ZAD)] 0 2 ej

+ .[-?4A2 + jliZAB + 2(B2 +AD) -jZBD] e e~j&

+ [-j24A2 - 12AB + 2j(B2 + ZAD) + 2BD -jD 2 ] eje} . (18)

Rewrite Equations (1) and ,(3) as

2

S•Pe

and/

Id 1
1 e d'r 1

V =- - -T i-Vl - -€ o • L • -.2

i JWE 0 I

Pwhere

1 .S

by Equation (12.), and

d( dS

with"

i1 e ila, Vl =. 3/a 1 ee=•o'

-9-
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where i is the initial a-c conduction current, and vla is the velocity.
la l

Then we solve for the constants 'cI and c2

2

.• eo 3 2 +z 3ZBD)
- i( +B + 3dKK i (2-B +4AD - D 2 24A) +j(12+AB (20)

P32 la c2 0cL

p2 3

Ple o 3 2' Z322iz

P2 la~2  + i c+-TK 0i Q (19)

V2 laa C 2Do c

(po
where

Q=(ZB2 + 4AD - D 2.- .24A 2) + j(l 2AB - -2BD) , (20)

and

WEm 3/2 2 2"?.1/2
Co -j 0 ( 1 + K2 D 2 V +ji+ ý (i +KB-. I . ¾a

pp0
(21)

where

1 1 S 1D
Peo Pe] 2. +Ks2)1/2 2 (1+~ 2)1/2 (2 2)

'e Pe o + K-SI K0

hence

2 3 3
eo 1 0 0D

pe o 2e 2 1/2o(23

Substitute cI , c2 into T , and rearrange Equations (1), and (3) , then

= e Jo l +" o + j(7 - S) joe!O
c mo 0 (0) 2  Q SA]

.la . -je [Do 2-/2 oK SA)J
'la • e O~l+K 0 ~D,) +-Ble- o

-10-



•(+ o P[/2 3 K2 S) e-i (24)-JVla ( - o A(

1Z f" -je 2Ae+B 2. 2)'

V~l*----11 K0 ; (1 -e) e• ~ 1+KS

00c MOE (jw,)2 K

1 .1•o 1 +_2 K (. +j T.S e "jo .-j e• -Co)
-4 _~.jeG+4S2 32JB 2Ae+BI(+42 ~1/2 7 D 3 2~

la0 0 2o1 ~1 K S 2) - 7 B-KoSAj
[(l+K D)

o3/2 3/2 , 1e+B)/2(
+ V e'je I1 + K2 )D2) 1 +D 2 )-2.) 1 (I + oK 32;S2 (0 3- 2 1

(25)

The a-c voltage across the gap should: be

d0

Vc f E1 dz f - de

0 o

Rewrite Equation ((Z) as

' 1 _ .1 (2)

then integrate and arrange it:

1 3r -j -je0V c c -o(jw)4 OW) rd°+ E(2 - 2e i A0 "jeo 0 )

3 je0 3 -je
3- K 2.(e 0 1 N(Q.-.N.+..M), + j3-.K2 PI+ e ' )

S2 0 2•0

-11-



2 f 7feo e - 1j + .K [(-NjP~o ~ iL Mj3 1+ O0)
+ Wo (B - 0o.• + e- " 0) + 3 K' 2 M-N- o0- i D(e -1o)~•.

-v 2-LJ ('KP)/ E'e~oe 9
1  3 -i )]Ivla 3 (j0). 1

(26)
whe re

M = [-24A2 -,il2AB+÷2(B2 +ZAD)+i 2BD -D 2 J , (27)

C 4 0Ah~ 2)(e4 1

t 0 0

N A2'o+2B 3/o[IA+(2 +2AD) 8o +(IA+BD8e(8

- [-z4A2 + 2(B2 + 2AD) - D2 ] 0  ., (29)

Q = (2B2 + 4AD - D - 24A ) + j(12AB - 2BD) (20)

Equations (24), (25), and (27) are analogous to the results of Llewellyn

(with a slight relativistic correction) and express current density modula-

tion, velocity modulation, and applied a-c voltage. Amplitudes and phases

at'any point in the gap are in ter:ns of total current i , initial a-c conduc-c

tion current and initial a-c velocity value.

If we write Equations (24), (25), and (27) in the following form;

V = A* i + B*i C*VVc c lla Vla

v = D* i +E* i + F*v (30)

iI= G$ i +H*i" +I*vc la la

then A*, B*, C*, D*, E*, F*, G*, H*, I*. are so-called relativistic

Llewellyn's coefficients which have been explicitly expressed in Equations

(24), (25), and (26).

-12-



Now, in order to compare Llewellyn's relativistic coefficients and

nonrelativistic coefficients given in Appendix B, we have the following

flow chirts:

rel 4-(j•• )d m 2-Ze'jo -jOe 3Z- o

02
+2,K-o P + , (31)

non •4 JW) d+ -o I [2-2e O-,JOo-JOo ,e , (32)
00

2 f[ -j 0 J 0 1 r -jo

B* -- -e ++

B Wel- . T e 0 + -I + [ (M-N-jP)e °-M)re C OW() 1 0

0

C0 ~~~~~ -j0eO +K 2 je l

+j D(33)

00

[-l 3a 0 ~e "Je°1 + j~va-o(4
non 3 a. 0 a)3

1 0 )3/ -j' 0o-e01 :(M-N-jP)e o.e
rel o -( j•) - 0,

(35)

C non• - -j)zJ (jeoe"'e+ "e ° 1) (36)

C w
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e )- 2 3/2, -j
rel (jw)2 moco ( K[

2AB+B (1 + K 2 S- I 2 fl[I +2 K .K(Q+i.A] e 0-je'j e-e} (37)

* 1 e F1-ie . --- le-Je -je 18

Dno 0- 2j) 0o~ J+V jy

D e (1 -enon I( _e a 0- (1-e -je-)e- , (38)

_ w .0A 2j 2__3/__G 2 2)1/2
1(+K•o2--B•2A•+B (SoS [D +'A. )

(39)

E e 1 ] j e~je (40)
non mo0 (j0 )2 

[W je

re l 0 0 2 1 1( o A2 /

(41)

Fon = (1 a V0 ej"i (42)

G* e 0 1 1 _ +- 3 K Q+Kj(T -S+ e- ' -je~e e) (43)
oel. mo Vo (v W) 2 0

G e I o (I - e-je- je eje) , (44)
non mfo v o OW) 2

* 2 /2 3 2
Hrel v-e DI+K + B 0-K (45)

0~ [1 +KD 2  Be KA)]

" [1 1 e Jo 2 f, e-jo

non 2 moc vo

-14-



I* -j -2.( D2) 3 Kz SA e"j (47)re'l - 0 "0 TO" o,

-j* V eJ (488)
non v0

First, we -should notice that these relativistic expressions could be re-

duced to nonrelativistic ones if 2 e << 1 corresponding to K2S2 << 1,

so that the integral,

,r f (c, - Ji ejl) (1 + o Si dZ + c

is reduced to

Tr =f (ci - jE) dO + c2

Therefore the terms containing K2 would be missing. (The nonrelativistic
0

results are given in Appendix B.)

Secondly, J and 0 in the relativistic case are a little different
0 0

from ,the nonrelativistic J and o , since both of themri may depend on the
0 0

applied d-c voltage. However they will reduce to the same value when

Ko/e< 1

*Third, while it appears at first that some of the relativistic express-

2ions cannot be reduced to the nonrelativistic case, even, if K terms are0
2B 2

omitted, with realizing that aa -w B, v ac o a - w (2A8+B), vo - s

and e = wT, one can after a little manipulation reduce them to the non-rela-

tivistic form.

-15-



IV. APPLICATIONS

.A. Space-Charge-Limited Diode

The behavior of a space-charge-limited' diode in the nonrelativistic

case has been worked out by Llewellyn 1 ' 2 . Now we are going, to investigate

its pattern for the relativistic case by the results obtained in the last chap-

ter•,

Since the d-c potential at the cathode is, zero, i. e., Va = 0 , then

K-o ni ÷• :o

Also for a space-charge-limited diode, the -electric field at the cathode has

to be zero, from Equation (A-i):

1
2 id .. e E

•[Z" 1/.2oI/ - m o E °

K _
where

1

K 2 1/2

0

therefore

2 e2 (2AG + -B) e - E
m 0

0



where E0 =: 0 at. 0:= 0 , hence B = 0 In a space-charge-limited

diode we therefore have

B = 0, D =0 (49)

By Equation (49), we find Equations (33), (39), and (45) equal to zero, i. e.,

B* =E* =H* =0 (50)

Also, if we neglect the noise at the cathode, then vla= 0, so

Equation (30) is left in the following form:

V = A* i , (5)c c

v 1 =D* ii , (52)

i G* ic (53)

First, we study Equation (53) to see if the conduction current will

be the total current when G - 0 , as in the nonrelativistic case. Equation

(43) gives

(I l+3 K2 [Q+j(T esA)} o je
G* 0 E0 0OW22 o I I-_jTSA

(54)

The quantities SA , T, and Q are given in Equations (17), (18), and (20)

respectively, but in the space-charge-limited case B = 0, D = 0 ; therefore,

SA= A .5
A5 '

T = -jA204eJe+4A 2 3 eje 4.jl2A 202ej - 24Az2 eje - j24A 2 ej0

Q = -24 A , (55)

-17-



and

1 Pe
v

By Equation ,(12), we have

(I + K 2S i/
2) 1 + 1 K2 S

e s s

Since from.Equati~n (17)

2 2 2V 
n

KS = "n1
0 -7Tn

and since

1

S e(ii 1/2

22

therefore S = AO in the space-charge-limited diode. From Equation (54),

we get

eJ 1 1 e J 0 e e Jo VnlT•-vo o v = eS

too o (jw) 2  00 3 moc 3

0 0

Ve3°m •3 : A~ -~z I~v-'n)V(56)

mE 0 (0 3  A0 2  (2 n

where A is given in Equation (9) and where (V/Vn)2 has been neglected

since we are interested in the first-order effect only.

With Equation (55) and Equation (56) substituted into Equation (54)

-18-



G* 24 (i+J!){ -l 'eY-V K'A' [-.24&ej+ j(.j84 +40-j1202- -248 -j24)

5 2 e- O] e-je (57)

When 0"-0 , expand e-jO into a series in Equation (57) to get

1+ e2 32 2 -24 2_ (-je)3
G n) (I+- JI ~I-jG- L .- K A -4I1 - zý +

e2 n 2 o 2 3!

+(48) 4 + + ) 6 +(e4 +j403- 126Z-j24e +24).-j-5.-(l-j} -je(l-j8)÷T . + '

n (I ) KZA2e 6  = I+ -( -- A284) (58)0

But by Equation (7)

K2 S2 K2 A2 4. 2VIKZSo = KZAB~ = Vn2 ,••tn

0 0 Tn\ 2Vn/

and if we neglect the second-order effect, Equation (58) reduces to

=* (I + V I-..(iV 1Sn ] Vn!.

When 8- 0 , this equation indicates that the conduction current is still the

total curmrent, as -it is in the nonrelativistic case, which is as it should be.

If we express Equation (52) and Equation (53) explicitly, with the coefficients

for D* given in Equation (37) and G* given in Equation (43) and setting B= 0

and D= 0, we get the velocity modulation

-19-



V 1 :Di ~Z0 (13+K S) j Z ol+ZSZ) {/ 332A

-( +KoS 2 -e-j0)- -(1'+K e-jO 3K2A'2
0c 0c n 0 'o

aC omo

(60

Eqain (51 and) (31)2,i

I(-Z4.j-j-r,)e-J +ý(E)4+j40 -1,262 -j240+ 24)] - j eJO ]

e_ 3V -jO_3 5 -j 01)

CO -om o 0 ( n )-. d - o- o I- e "- e "e (-24 -j -7•) e

+0jw 4m 4-'40 1 0  I-20+2 -~-e]

(59)
and the current modulation,

e J[1 jO 5 .j 3
il__oi%=•noo. o• cOe~o. 1 1 " e TK oAZI( _Z4_J__)e-+0+o+j49_ z12.

- j240 + 24] -jO e- E)

=- -2- -e-j0- 3 Vn 2-4-j, 0 ) e-j0+ E4 +j40)3_ 1202 - j240 +24 -jO e-jE)

(60)

Next we consider the behavior of equivalent diode impedance. By
Equations (51) and (31),

• Vci =A*= 1j 06+ a e -' ei=q co0 COO ) 4 omoe •._0_ ).-2% 3Ae•o _

E)- 0 +o 12 0 4- • +• j 7Ko oA., (+ e-° )(4- 40,• _ 0°• +2 0 )]

(61)

.with B =0 and D =0 .Separate Equation (60) into its real and imaginary

parts:

Z =R +jX (62)
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where, from Equation (61)

B. eJ 0  3 K2 A2 (c 4+i2e_4
R 4 Zj~~~2(-cpse00 )-E) sine00-K0A(o 1 1(9+10 8

Como Co 0,J) L0 0 0

• 85
0z s n 5-4e3+24e)]

+- in A E) ~ (63)

and

d• eoo(J•) r o o ,X e.J 0 e(1+.ose0)Zs ine0 -3 K 2A*2 sinO0 (-4+ 2e- 481

3  2Z +cO43o -4eo3+Z4e0 (64)

At very low frequencies, a diode with complete space charge in the

nonrelativistic case acts like a pure resistance and not like a capacitance.

In the relativistic case, expand'Equation (64) in series. In the expansion,

the term d/wo may be written in terms of the current by the rise of Equa-

tion (8):
e

f 2 2 -0/2di/=dO- A0Z 2  e de

o, (1 +KoýS 0

00

ýO

0

= K o- A-e o 0o' ) 2 0 J K'- 0' . (65)
2 mo -5o oO0jq0

Substituting Equation (65) intotEquation (64) gives
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x0 - 1 00 (3,+ ()0 [1 ý(+cos0) - Zsin0 --3 K2A2(1 +cos

fOW 0 20 0 0 0 28 0 02

5

)_ 2l~)m~ (_4 12 02 -48 2' A0( + cs
(T 0 o, T oo 8o

ee 0  32 2 2144()

E ("o4mo° 40 -2 o 21x 144 0

Now the coefficient e Jo/ 0 O(jW) 4m 0 E 0 is present in both the resistance

and reactance expressions given in Equations (63) and (64) respectively.

Since

2SAeo =1 P 2

by Equation (7), then

0

1# [ 2 V( 1 + V 11] + '
_ o 0 (67)
4 0L (Q:jo

If

eJ eJ e1
____ ___0 -2.0 (68)

f O )4 - _______ fE__ 4- 1-
E 0(j )4 0 0 0 0(j•)4 moc (682
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substituting Equation (67) into Equation (68), we have

2 V7+ V
12 I ?I .V = . • I

e J 0e J 021 K 0 n\ n 2 2v12l+1:OWj) 4mo: M C,•4m ' f 0"4" 4M e (403 e j° -2o¢ 3 3To • o vn)

____________E 0, 3)Z ~i r

(69)

where V m c /e = 5. 11 x 105 volts. Note that J hre.eis'therelatirVi'ticn 0 0

d-c current, a little different from the nonrelativistic case, the derivation

of which is given in Appendix C. From Appendix C we have

Jo KVoT8l -8 = Jo(non) (70)
0 0Vn o~) 2 n)

where Jo(non) is the nonrelativistic d-c current. Then Equation (69) will be

OW)M 3 non) I 1 V 2

r 12 I + V 17 (71))e(non) (1 28 e(V1),

0

and

2 2 12712V
K'A +=o n4 n + ni e 4 Vn

0 0

written to first-order only.

Turning now to -Equation (66) again, we have

X r 12 (,I 17V(.0o 3V 1 11 0
-4clnon- 28+ 4O Vn e4 21x144

o 0

S"3 + .52 43 V ,,(2.

S-rc(non) 22+ n-,(
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In Equation (72), as in the nonrelativistic case, 0 -• 0 and X -* 0

The low-frequency resistance can also be found from Equation (63)

by series expansion of trigonometric t-erms, giving

Z 2 o / 17 73~~

-3 Jo(non) 2.8 Vn 1 -- 0 Vn 7 168(

When 0 - 0,

R. = r(n 1  + 17 1 3 .V = r I +
n8 e(non) 28VnI

This value checks with the value calculated from Poisson's equation given

in Appendix C, and this is recognized as the slope of the static relativistic

characteristic. The physical interpretation is for any given voltage. The

electron velocity is less than that calculated from nonrelativistic consider-

ations. The charge density is therefore greater, and the current is there-

by reduced, so that the resistance is increased. The form of the -resistance

and reactance as functions of transit angle is shown graphically in -Figure

1, the; data for which are presented. in Table I. The curve shown inFigure

1 is for V = 2.115 x 105 volts, the maximum limit of our analysis.

When using the figure, one should be careful abodut the tra'risit aigles.

the relativistic transit angle is not equal to the nonrelativistic one.. By

Equation,(65), we have

d 13eJoeo_ 3__V_

d 3 0 1~~~-4 K - 4K0 0

~m C W 0-KAe: 0 ~ mo: lA~~~

03
6 me Jo . 3 nV

00
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'1 .0 " "S----,REILATIVISTIC' CASE

0.8 - .NONRELATIV1STIC. CASE

0.6-

0.2-

no, enOn0 \"\-\.-•-' I"r ,'"

V2ý -77r 4,7r

-0.2 Ur'r7

-0.4

-o.6- \• (non)

-0.8

IFigure 1. Internal Impedance of Diode as Function of Transit Angle e.

In the nonrelativistic case,

o 1(non)-2-

d, f _ _ = 1 p 3 eJo(non) . 3

0 ,P•e 6 ,3 non 6 m e o o(non) (76)
.,- e 0 0

and equating Equations (75) and (76), and using Equation (70) gives

0 o(non) + 28-- Vn
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Table I. Data for Internal Impedance of Diode as Function of Transit
Angle 0.

Transit Nonrelativistic Relativistic Nonrelativistic, Relativistic

angle value correction value core

Sr r •n x/rc non) X V

cr/rnonnne(non) rc(non) Vn

0 1.000000 0. 178571 0.000000 0.0000010

1.0 0.935093 0. 113415 -0. 288320 -0. 146720

1.4 0.875997 0. 135635 -0. 388551 -0. 119100

1. 57096(1/21) 0. 845991 0. 15.3627 -0. 427248 -0.073750

1.8 0.801872 0. 146760 -0,474784 -0.095990

2. 356195(3/4wr) 0.680630 0. 126340 -0. 566900 -0. 133050

2.8 0.575244 0. 110000 -0.615070 -0.110360

3. 141593(w) 0. 492768 0. 094500 -0. 636620 -0. 113682

3.6 O.384844 0.079490 -0, 645341 -0. 119320

4.0 0.296930 0.061570 -0. 635891 -0. 117020

4. 71239(3/27) 0. 163340 0.,034940 -0.587754 -0. 110,720

5.2 0.092785 0.010440 -0. 538847 -0. 103353

5.6 0.048612 0.011540 -0.493874 -0.096146

6. 283186(27) 0. 000000 0. 000000 -0. 415605 -0.08120

6.8 -0. 017391 -0.006500 -0. 359815 -0. 130135

7.2 -0. 022019 -0.007400 -0. 322399 -0.064610

7. 853980(5/21) -0. 018462 -0. 008430 -0. 273109 -0. 053910

8.4 -0. 009979 -0. 007020 -0.243708 -0. 036473

9.0 -0. 000206 -0. 005920 -0. 222267 -0. 048130

9. 424776(3w) 0. 006084 -0. 004260 -0. 212207 -0. 037894

10 0.010942 -0. 003470 -0. 203237 -0. 033916

10.995592(7/2w) 0.010669 -0.000312 -0. 192560 -0.032164

12. 566372(4w) 0. 000000 0. 000000 -0. 017249 -0. 029391
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or, considering the first-order only,

+5 V\
-o(non) 28 V(77)
n

Now, we want to know the change in its negative maximum resistance when

8 is moderately large. Equation (63) could bewritten as

R. r-Lnn (l + LIZ8'si o o sine (78)ocý(non) * VJO 05n/

0 0

when

0 Znr +1Tr, R. R0 2 max '

and

-R r 1i + 1 1 2 T13
max c(non) 140 V L (4n + 1)J

96 r 1 + n=', 2, 3, ( (79)
TO c(non) n+ 140 V

1 v
We can tell from Equation (79), that -R. is increased I

max 140 VPn
compared with the nonrelativistic case, but this effect is very small, being

approximately equal to 0. 3 per cent when V = 2. 115 x 105 volts.

B. Application to Klystron. Gaps:

The following analysis does not assume that the d-c space charge is

sufficient to depress the space potential distribution, but is based on the

fact that practical klystron tubes operate with grids at the same potential

with relatively high d-c voltage so that the space charge is insufficient to

-27-.



affect the space potential. The geometrical dimensions are given in Fig-

ure 2.

A B C DfI i . I I
14- REGION I-i-4 REGION 2 I]4"REGION 3--4I I '

I CI II I I

- lI - c2 cI 4- c3 -

I II

2  I• I I

I I!

Figure 2. Sketch of Klystron Gaps Illustrating Nomenclature.

Region I

vA = VB = VC = VD =V

At plane A, i 0, vl= 0; that is, there is no initial velocity
la la' =

and current modulation. Thus Equation (30:) is reduced to

1 1 ci

V= D1*i c (80)1 c

1 1 cl
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From Equation (80), we get

V
1

'ci 1

D1 V1 (81)
I V- 1

A1

'1 1AV1

iI 1
A1

Now, we study the velocity modulation first, using D* given in

Equation (37), and, A* given in Equation (31):

D* = (I +oKo 221 (1 - e-Je)

13 K2(Q+j 7--'SA e-J/je e- "i

(Z~+B)1 O I - :1 o' 3o

jS 12 - 1  3 e

3 e Jo -je - -je

O* 3 0 0 2e 0 tr e A = 0)A1  (jcO) d 0- M - ~ Z Z j j ~

'3 e -1) (Q - N + M) + j.3 K2P (11+ -- e01

Since it is assumed Jo P 0 and V =A VB therefore A 0, B 0; then
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1 Vl -1 e 1 + K 2 D -3/Z1 ,o

0 0
3 e0 + j - 3- T j-

mo - V 1 2 e T

Se0
_eT 13/2 sin-- V e --- 1 + K DZ'3/ -J-"

By Equation (14)

dE)~

d f fe = t -V T (T(e Pe 0"

0 0

since w/pe = Vo and v°0 is a constant. Then we can rewrite Equation (82)

as

.00

0 0
/i si-n(

1 m0 V 20 V 0

From energy relation,

m -C 2 eV

vo

0 0

solve for v 2
.

Vo eV + + Iz eV

e 11 22

0 0 V e eV (8V

(1+7 n)VV nj 0 n)

(84a)

From eergy rlation



And KD2 D = 2V/V by Equation (11)' if we neglect the second-order
0n

effect.

Finally, Equation (84) will be in the following form:

31 V -vV 1 e 3V 2 0e0

(85) "

where the minus sign on the right-hand side of the equation indicates that

the direction of the velocity is opposite to the direction of the total current

ic It indicates that the operation of velocity modulation with high acceler-

ating voltages is seriously affected by the relativistic increase in electron

mass. In the nonrelativistic case, the change in velocity is only V 1/2V
mas..

as given by Hahn andMetcal;5 while in the relativistic case, it becomes

Vl1 (I _ 3 VV:

This factor, which measures the reduction of modulation from the. nonrel-

ativistic value amounts to, 0. 76 for 100 kv.

Furthermore, if one adds the factor eJ~t in Equation (85) and takes

the real part,, one; gets

0 c

V )sin 0  e
R.V) -V 1 - -- j- v cos(Wt (o) . (86)
e 2 22 _

If one takes the center of the gap as the reference plane, and a reference

point for time that will give a sine wave, then.the total velocity is
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v = v° + - M sin wt'l , (87)

o e
where the beam-coupling coefficient M = sin 0/40

_ _T

Next,, we want to know the current modulation. From Equation (81),.

.il -. A*lV

1

From Equation (31), A* is reduced to d/jw° , since J % 0. From Equa-
1l 0

tion. (43)

Se 
o 1 -K2

G1 : 2o' 'V j() - 1+ o ( jTr---' )I 0

where when A = 0, B = 0 and d = v T , Equation (17) reduces to Q =-D
Equation (18"' to T =-jDz j° and Equation (20) to SA =D 0°0. Therefore

e je jo -j
.m V2 liar) '1+ .7°Ko -D:iYD e -j e

0 0

eJ V j- I+i ZDz{ +eO°o - ej
= -7 w- je 0  e j0em v 0

.00 j 0 -jo 0
je° -jeo

Since the gap is very small, .we can expand e and e into the series,

eJ 'V 1 1 f [' - KZ D:2 1+i -e.je o ei

mo o

eJ0 1  , e-V _j 00 3 2 22z 7o 0
my 0  o - 0  e +K o o0 0 e
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o 2o
(IJV 1  - 3% 2 2' + -jeD

0 0

0 as -o0

Therefore there is no current modulation as long as th ,gap is small, just

as in the nonrelativistic case.

Now, the most interesting case left is the beam-loading conductance

and susceptance. The admittance of the gap in Equation (81) is:

yc - 1Vl a

where from Equation (31),

A* _1j 'd + e J - 2 -oO-o -Oe 7 ,j
- ojw)4 '0JCA) 3d d 4m ( e 0  e0 o

( o 30So \ j 2 0 \. f

Since J ot 0, we can expand I/A* by binomial theorem to give

e(jW) [( 2 3 ' o eJo03 2 /e-je
A*~2- e71 -jO JO)dEm L 0 -e-e 0) .K(.NM) (e .1),

0 - K (Q-N+M
OW 'J) 3dc 0 m 0

+j0-KoP 1e + ejie)]}

2-2 j3 -jO e 3 2
{- 0 0 2 0 +j

+ 

,eie

then divide this into the real and imaginary part. The real part will be
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e J 0 r
G .l -o-coO 0)-e sine 0 _ K2(cos o 1),(Q N+M)j.K Psin .,ýd2 o[o 2- 0_ 0 0.0

m L~ ne
(88)

When A = 0, B = 0 and d = V T, Equation (2.0) reducedto Q = -D0

2Equation.(27) to -N = 0, Equation (28) to iM = -D , and Equation (29) to

2p = D 0. Substituting these values in Equation (88) gives

e J
G o_ -- 3K.D- 2.( - cos 0)0. sine0 (89)

mv 2 e2  2 0

In the nonrelativistic case, Equation (89) becomes

G -2( O 'sn (90)
Gnon 2 2 12( - Cos) osin

0

where use has been made of the fact that G = Jo/V and mov 2o/2 = eV

Equati-on (90) is the familiar form of beam-loading conductance of an or-
dinary gap as given by Beck.6

2. 2 22
In the relativistic case, v0 is given in Equation (84a) and K D is

known to be ZV/V , then Equation (89) will be

G 0 o ; [. Icos 0 - 0e sin O°
V 20 2  2 Vn co) 0

.0

GO 0 - COS eO) - (e sine] (91)

2 E2  [(. 0

0

Note here that J is the relativistic current which may or may not be equal

-to the nonrelativistic value, but evenfor the space-charge-limited case,

the current differs by only a small amount, hence we can still use G = J /V
0 0
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without serious error. Furthermore what we are interested in is the ratio

G/G° . Equation (91) indicates that the relativistic effect is rather im-

portant since when V 2 x 105 volts, G/G = 0. 412, which is a serious

decrease in beam conductance.

For the susceptance, take the imaginary part,

OW e 0 + j eoJ ) [2 sin 8 - 0 (1 +cos 0 ) -K (9D

d 2 d 2 m 0 0o0 21

0

0 (d + J 0 2 .s in 0 - 0 ( 1 + C o s 0 0) . (9 2 ,)
d2 ()2 0 0

The first term in Equation (92) is the susceptance resulting from the gap

itself, and the second is due to the bearn., hence the beam.-loading sus-

ceptance in the relativistic case is

G 0i
B -2 + (i -2 [Y.2 jsin 00- E~(1+ cos 0)] (93)

0

while in nonrelativistic case, it is reduced to

S1 [ sinoeE- (1 + cos 0i]

as given by Beck. 6

Region 2

In Region 2

V2 *= 0 = i2  +0+ 0C+ (94a)
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v 2 = D 2 i c + 0 + F~vb (94b)

i = G* i2 c + 0 +±Ivb . (94c)

The current modulation terms are missing, since there is no current mod-

ulation in the first gap.

From Equation (94a), we have i = */A* vb and substituting this

in Equation (94c.) gives

G2 C2 vb +I * * v 2 Z
A - vb I 2 vb = A2 * I*

A2 A2 I2

*/
whereT Gf , Cd, A*, IZ are given in Equations (43), (35), (31), and (47)

respect'ively, and G., C2, 12 all contain Jo in their expression, hence

G * C*/A*I* approaches the order of J . Since J 0I

approaches zero,; therefore

2 = 2 b -i + K0D2 2 32 0A) be2

2 2Now with A = 0, B= 0, Equation (17) gives SA = D e , which if substi-

tuted in the preceding equation gives

1 ( + K'_D) e2  ( 0 2 3K 2 D2) e'2vb

v jj2 (
j -( 77b) v Jo 2e 2  (95)

0

The minus sign on the right-hand side of the equation indicates that i2 is

opposite to vb in direction. This expression is the same as in the non-
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relativistic case, except that here it is the relativistic expression. From

this, it is apparent that tha current in the drift region is not affected by the

relativistic effect, since there is no relation between current and the mass

of the electron, which accounts for the relativistic effect.

Similarly, we can solve for v2 in Equation (94):

v2  D i2  + F~ =F*(~~)Vz = D 2c F b2 A-- "7b

Again
D* CG#2 2

A F~

approaches the order of J 0 and since J o 0, therefore

D* C

A* F

and

* = e 2 3/2 Kz D2) -3/2 -jSF e (1+ V1 + K De2 01 0:~

as in Equation (42) if A = 0, B 0. Consequently

v2 = e vb , (96)

which indicates that as in the nonrelativistic case there is a phase shift

only in the velocity at the drift region.

Region 3

In Region 3

17 A*" + B* i +C * v
3 3 1 3c B 3 2  3 c
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Solve for 1 3c

V B . C3

-3c 3-- v (97)Aý3 Aý3 2 A3 3

The last term in Equation (97) is approximately equal to zero, since

1 9 / -je 0 -je 1 +3 r -j~o
( = - 1 + K DZ Pje +e +K 0[M-N-jP)e3 o OW•)z 2 o 02

Since J ýý 0, then C* R 0.. We are not interested in the velocity modula-Sic o 3 "

tion term. The first term in Equation (97) is observed to be the capacitive

current:; the second term is the induced current.

From Equation (33) and (Z2), if A = 0, B = 0, and J ; 0, the rela-
0

tion between B* and A* is

3 D + K -D (e (98)(jW )

A3 * OW) 3 O(jW) 3d
3I

R~ecognizing that 1 = D/1l +K 2 D 2 as given by Equation (12) when

A=0 and B=O, 6ne.has

d = VoT T3  ( D T3o 3 e 3 2 I /2 '

hence Equation (98) will be

,83 03 8

3~83 3 3
-e -sin--eB3 e-1je3• J 2 = -

A j'W T 3  
03 3

33
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The induced current is

.3

3. = e M 3 i 2  (99)

where i2 is given. in'Equation (95). a b/ i(0

7Ji -' ' o) J M 3 e 2 e e (1 00)

The transadmittance gm is defined as Ji(out)/Vin' and vb/V° is given

in Equation (85) with 8 = 81 then

gm - MIM3 -2 1 1 -3 ..1,n )(j3e) ee , (101)

where
. 1 

. 3
sin- sin

I 81 M3  83
2 2

3 V

The expression gm is reduced to 1 2 V-n of the nonrelativistic case

given by Hahn and Metcalf. The factor,

(e1+ 0 3)

is missing if the center of each gap is. take-n as a reference plane.
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V, APPLICATIONS TO THE VERY HIGH-POWER KLYSTRON GAPS

The applications given in Chapter IV are limited to K o/2e <1
oe 2

The results obtained in Chapter III are applied in Chapter IV to space-

charge-limited diodes and klystron gaps. We limited ourselves to K

< I because of the difficulty in solving the wave potential integral i•
2

This difficulty is eliminated for klystron gaps, for if it is assumed

that the space charge does not change the space-potential distribution in the

gap, then the evaluation of the integral Tr is without any limitation; there-

fore, we can extend this even for K /2 >> -- I
-0 e 2

_ 2 3/2

fTr ji eA)i KS) dO +C

= -ice.(1 + K 2S )- 3/2 de + C

f (C - icej(i + K2 D') + C2  , (102)

2 2.

22 2

1 - j e - (1
e 03  + 2

where KD AO (C+ B6+C ,sic jB

but as 0 -. 0 and i -I i =0 , we can solve for C 2
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C2  i-(3+Ko• /- (103)

Similarly C 1 is obtained by substituting Equation (103) into Equation (3):

~ =j~5 ~ie C~ieO 2 3/2dI e e-je _ I
v ~ 0 = 0€• W (C¢ I " 2•1 d

With 0-. 0,v -'v =0, we get
1 la

(:•.C ji) 1+ K 2 D '2"-- 32B (I+ K2oD2)-' 1( + K 2 D ,.,f /2 i +C, =o
c 0D 0 0 2

(104)

therefore C1 =jic Substituting C 1 and, C 2 into.,il and v, again,

we have

-G e J 0  1 2 +K2D)3/2 (1 - ej -jee-je )ic (105).
c = G0co W) (j2 0

V= D*ic e (I I + )3/2 (11 -ei)i (106)
o = ( 0 )

The applied voltage across the gaps is

d o
= fE 1dz f -.kdO

o 0

where E is given in Equation (2.), resulting in

80 E11 icp

EIdO P e00  Td

. [ iJ fJ
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~A*i 1___ F. ~3d +eo 0 ; K2D2 3/22 e'0Ojoj j
-() 4E o ( + K ) Z7 _G0

(107)

Now,. 'the velocity modulation given in Equation (81) becomes

vI D V - + K 2D-3/2

A I1 d e .Mo (j0)) 0

m3/2 -sin - G

2 e0 ( + K 0 Do0 l e (10 8)

where v° is as given in Equation (84a) and D is as given in Equation (11):

02 2eV 1  V (i+ 2. 2 '32 -3/2
.v (1KD1/. [+~(+ .)

Substituting the preceding two equations into Equation (108) gives

V.0 .

V i = z v e (109)

2V ( 1+- V-) (+-)V 0 o

7
This expression is given by Beck, and wi.l.reduce to

0 .e . 2
i3vVn)V sin-- -j3 K- 1

v 1  2 v e for - <-
2V e. o

s s n i2

as shown in Chapter IV..If V = 1000 kv,



1
= 0.17

then the relativistic effect is seen to be very important in very high-power

k'lystrons.

As for the current modulation,

G j0 e J0
0* d 0 m 0 v 11 D (1.- ej)VI

e J o V. 2 2J 1 3/+ejD)/

I + vD 2 ) (1 - e-' 3-j ) e
M IE V 2  ja

000

Since the klystron gap is very small, or, 0 -* 0, then by series expansion;

=eJ V - iK .23/2 =1 o ,I + K 2 D2=I (I - jo)- jeo( - jo} 0

Current modulation is still zero, as in the medium-power klystrons dis-

cussed in Chapter IV.

By Equation (107), the beam loading will be divided into real and

imaginary components just as was done in Chapter IV, giving

G - o [2(l -coso) -0 sineT o70 01~

o 0 [Zsin -0 +1O1o)]
2 V2() o )
n n (110)
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Equations (110) and (111) check with the results obtained by the ballistic

approach given in Appendix D. The plot of both G and, BI will be. shown

in Figureý 3.

V/VRO _ _ _

0.2 G/G 0

1/4-I /Go

1/2
i .

S .

-0.1 \ 1/2 / i

-\. 1/4 /
/

-0;2-0,2 V/Vn ,0

BG BI
Figure 3. , , as a Function of D-C Transit Angle.

Go- Go
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VI. CONCLUSIONS AND RECOMMENDATIONS

This study gives some idea of the importance of the relativistic

effect in a space-charge-limited diode and in klystron gaps using Llewellyn's

relativistic coefficients, which are derived from wave theory. We applied

Llewellyn's coefficients to the space-charge-limited diode and klystron

gaps under the restrictions that Ko/2 2 < 1-. Velocity and current modu-
o e 2,

lations, and equivalent impedance and beam-loading admittance, were in-

vestigated in these two equations. For the diode impedance, the results

obtained do not differ greatly from Llewellyn's and the negative maximum

resistance which is related to the diode oscillation changes only 0. 3 per cent
,2-2 1,thliioforaayi.F m

of the nonrelativistic value at Ko/Pe the limit of our analysis. From

this result we can predict that the maximum negative resistance cannot change
2 2 1

too much even extending the analysis to the Ko/Pe > 2- region, or V >2. 115

x 105 volts.

From the results obtained for klystron gaps, it is apparent that the

relativistic effect is important. Since the assumption is made that the space

charge does not affect the d-c space potential, exact integration without any

approximation is feasible. We find that both the beam-loading admittance

and the velocity modulation change appreciably, as shown in Figure 3.

Further work should be directed toward the following problems:

i) Find the exact solution of the wave potential integral 1T , given

in Equation (5).

ii) Apply these results to high-frequency triodes and tetrodes.

iii) Study the power flow in the relativistic case.
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iv) Study the noise phenomena.

v) Take account of the'force resulting from the magnetic field.
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APPENDIX A

DERIVATION OF BASIC EQUATIONS

The Basic A-C Equations

The analysis which follows is based on the following assumptions:

1) the motion is restricted to the z-direction only,

2) no Maxwellian velocity distribution,

3) no electron overtaking,

4) a small-signal analysis, and

5) positive ions are not present.

The relativistic equation of motion is

d v e E (A. 1)dt 2 1 2mo0

Since dz/dt = v, we can write

_d c 2  e7 A,2

Now, if tvlI<< c, then expand the left side into the Taylor series about v0

c 2c 2 +ve jwt d c2

-1-/ (2 /2 1 01

2 v vt

0o 1

c

+ (A. 3)

-47-



From. Equation (A. 3), we can separate Equation (A. 2) into its d-c

part,

0

-J-z v2 0 0

c2)1/2

and its a-c part ,

d - vov le jWt e E 'e jWt .(A. 5)
dz 2 /2 mo 1

v
1

c 02

From Equation (A. 5), v I can be expressed as

2 /2
v

e 1 _ 0

v e jWt C2 - fE e jWt dz (A. 6)v
0 0

The equation of continuity is

8i e jWt 80 e jWt

a z 01.

Since

d dt + 1 a+ a T-Z Tz- U -z TF D-Z v
0

then

di e jWt i 1 e jWt 8i e jWt

-- Tz- -3-z v -Ft-
0

and also

Povi + Plvo (A. 9)

-48-



Note that here dz/dt v 0 + v , but for small-.signal analysis, v should

be neglected since 8/8t is another 'small a-c term.

From Equations (A. 7), (A. 8), and (A. 9), we have

di 1e juojt

S- =]u vl ei _t (A. 10)dz v
0

The plasma phase constant is defined as

- e 10o1 eJo
P M IE V 2  m f V 3

0 0 0 0 0 0

Also define e e /v * and KO = w/c: Combine Equation ,(A. 6) and

Equation (A. 10) to give

(eJCjtZ1r5lejwt die = Ric 3e 2 e jCtd dzj (A. 11)

2 3

where use has been made of the fact that 2/p 3 is independent of zp e

Define a, wave potential i(OE) for convenience as

"T: _ jaK - Z)j Ee je 1 dc < dO (A. 12)

where we have- introduced the d-c transit angle 0 = f~dz. Furthermore,

one gets

T j= dtl J - dz = dz =8
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where : is the d-c transit time. The field intensity E 1 can be expressed

from Equation (A. 12.) as

1 I -jE)d 1_d_(A._13

J='o 0~ eJ dO 2 3/2 - O

1e FWe)
'then by successive differentiation, we have

1 eF =O d I / Z d F
K K

(A. 14)

Equations (A. 6) and (A. 12) yield

I e - jO
V i m= e -d ( ew ) (A . 1 5 )

o o e

Equations (A. 11) and (A. 12.) yield

1l •P e~jo Tr 
(A. 16)

1 2•e

Gauss' law for the electric field is

8El = l-
(A. 17)-FZ IE "

0

From Equations (A. 17) and (A. 7), we obtain

a (i1 + jWE 1 ) = 0
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or
+ jW0 El = ic ,(A. 18)

where i is called total current density. This must.be zero for-a truly
C

one-dimensional problem, since an actual physical arrangement of infinite

lateral extent obviously cannot exist in reality. A current flow of finite

lateral extent must be considered, therefore i must be present in this
c

case; in an external open circuit, however, i would have to be zero.C

Upon the insertion of Equations (A. 14) and (A. 16Y i to Equation

(A. 18), we have the following wave equation for 7r

Since we assume that there.are no positive ions, we have

8E p

S= -

0

or, since J+ -p v

dE -J
0

Now, Equation (A. 4)can be written in another form:

2 d e__e

W 2 - E - 1)
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Eliminating E 0 between Equations.(A. 20) and (A. 21), one obtainsi

1
d2 •e 3
de- / p (A. 22-)

This reduces the wave Equation (Ai 19) to the follwing simple form:

d 1 dir e jo

()3 /2 '

The general solution to this equalion will be

K. 3/2

where the integration constai.tc cI and c 2 are to be determined from the

a-c boundary conditions..

Now, we collect our expression.- for the various a-c quantities:

i l_ .ej i , (A.. 16)

E 1 i1 = . , A. 2 4.)
1jWE c 1 0 c P2

-e -Jl
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d 1

e je0o d• I
V l = - -, e - 11

m0 doo I' dOFFe

V1 j K~~-- j 0  di _____

e Ie i dK

- - - - e - d e 1 -• -A. S£

3WE 0 m o{ c K ,/ I d

"d d o

0 0,t o 1C I, e•

• c ji j K0 o +c (A. 2 53

d 0 O0 "P 0O

C e

1 Efe-iedo i ej r
-- ed 0(e 6T

00

where d is the distance bet-ween the electrodes and? 00 is the correspond-

ing, d-c transit angle e dz.
0

The a-c gap impedance per unit ar,•a is expressed by Z = V c/icc c

Foracoldgap(i.e..P= 0 or J = 0, Zco= 1/jwco, where c = E /d isFo odga ie, p co o 0

the cold-gap capacitance per unit area.

In order to solve the integrals appearing in the a-c equations, (A.:16),
K21/2

(A. 24), (A. 25), and (A.,. 26), one has to -express - and P in
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terms of 8. If V is the d-c potential difference. between two planes, one

gets from Equation (A. 4) the energy relation,

cz 1 . - e . V , (A. 27)

which can also be written

1

e /2 V / -n + (A. Z8)

where V m c /e is the equivalent potential. Integrating Equation (A. 22)

and using Equation (A. 26) as a boundary condition at 0 = 0, V = V
a

0= 0 ,V = Vb, we have

1[~a(A. 2g)

Denote tha right-hand side of Equation (A. 29) by S(O) and solve for 1/Pe
(I K /

and - 1-[-Va +,

K2/2
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1 5 (A. 30)

(i +K S)

K 2

0 -- "e/ =!1+KS)1o (A. 31)

Since S is, &known function of 0, it would be possible to eliminate.

/Pe\ and - " from our a-c expressions by .Equations (A.'30) and
"1{e and J So

(A. 31).

Finally,. we express the distance as

0or dO f. S
d= = f 2 de (A. 32)

S(1+KoS 2 )

From this, we see that a d-c transit angle 0 can be expressed
0

in terms of J 0Va Vb d, and w.
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APPENDIX B

DERIVATION OF LLEWELLYN'S COEFFICIENTS.BY THE USE
OF WAVE THEORY IN THE NONRELATIVISTIC CASE

The wave potential w reduces to the following formi in the nonrela-

tivistic. case:

It = f~c1 - ji ej) d) + c

Cle -ice.J + c (B. 1)

The d-c relations will be

d(LK) _ p)

Integrate Eqain(,2)to give
d V,,1e

2O

0 -L P 6  + a (B. 3)
e

where a is the acceleration at an arbitrary plane and a is the accelera-0 a

tion at plane a (the initial position); then integrate again to give

v 1 _ 1 + a aa v

- Pe ZP 3 • + 2

e

Here vo, va are velocities of any arbitrary plane and initial plane respec-

tively, where
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eJ2 .0
p m F v3

C 3'3 w 3

e• , v 3

0

2
'P .e'J (B. 4)

1 E1 jw°e
E) L= e i- ~~ (B. 5)

:w 0 c I Jwc- Ic P,2

0 e o•e " -ee
V, e 1 ~ -ji e I- + d(' 8-ie

(B. 6)

Here 0-0, i1* -ila' vlv1-a, Pp -*po, Pe P 0eo. and f~rom Equation

(B. 4):

p

ila = *S- (cz-ic)

eo

therefore
2

C2 eo o +i (B. 7)c2 2 1T la +c
po

By Equation (B. 6)

1 e w a -av c -Jic " " (c i
Vla- C J[. - .4oc

1c jic) . a Ceo • -i
jWE mw 1 la c
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therefore

WE m W a
e o ov0 0 + 0. + a ,eo . (B. 8)" e: la JJc va 2 l-a"V p2 Ipo

Substituting Equation (B. 7) and Equation (B. 8) into Equation (B. 4) gives

2 2

ee (C2  1  2
Pe Pe

•p [3eo e-JO

i c P -e"jE (I +jO .eie) + Ila pZ

1 e Ppo

2
WE 0m 0W ep o o e e E)e (B. 9)

Se

where it should be remembered that

o e Jo 2 e Jo
p ; , p -m E6

0 00 oo a

2 P 2W

eo 
V4

After a little manipulation, Equation (B. 9) reduces to

___ 0 1 j -i.-.io e 0 2e

C ME 2 7laL 2 m E J
0e vj (B '1e0v)

J

-5 Vla

-58-



If written in Llewellyn'Is form, Equation (B. 10) becomes

G*i + H* i +I* (B. 11)

By comparing Equations (B. 10) and (B. 11), one obtains the following:

J

H - - - T2] e-Je (B. 12)

J0 0

= -j -jo

0

Substituting Equations (B. 7) and (B. 8) into Equation (B. 6) gives

S~d 1

_ 1 e 8 e 1
- - 1 "" -c (c2 + 1 j e

=-: E 00 M_• 0c 2 1+Cl0_c

- e aje p. . Oaie

= -i 1 ) [o(o - .j +c -ejC 0i) m e ) (1 0 -j eJ)Oc2

-i 1m o ( l )2 Le-' a"1 (e e -e -vl -" e-j e B o

- e a [aT _ j()+ ( aOT\ -je

Compare Equation (B. 13) to Llewellyn's form,

D *c + E* ila + F* va (B. 14)
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Then. we have

D Inc (1 -. - ,--a--(1e -joe-i9iOW) 2 mooc0 ~

ejaa 0 TL

m) -je e , (B. 15)m oE o )z TV

where T is the d-c transit time, and 0 = WT.

For applied a-c voltage across the gap,

d o0

.vc = fE dz = • de
0 0

where E1 .is given in Equation (B. 5). Substituting and integrating gives.

0 1 0 0 2 0

E I1 O tc dO e3p ejc + c1 - e)dO

c~= j P 3d . ( 0 8 e 0 (C

2S~ j'z -" -je° 23
Jc 2c +o p- -(- (eJ81 e l 0'p e -, + -

(B. 16)

Substituting Equations (B. 7) and (B. 8) into Equation (B. 16) and rearrang-

ing gives
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-je 0.jeo)]
OWi e Jo d -2e je je eo

c C (c )4 o 0  0 0 0
0OW

+ aa e-je + v+ .•o V e+Jo .

0OW

• ( je °1)

. a 0 e° +e - ( (B. 17)

00•

Comparing this to Llewellyn's form,

V A* i + B* + C*

= c la la

we have

A(0) + o (z e "J ° jie
o(jW)4 ME o

0

o (j e e + (
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I,
APPENDIX C

[i THE DERIVATION OF THE RELATIVISTIC EXPRESSION
FOR. THE CHILD-LANGMUIR LAW

Poi-sson's equation is

2
dv p (C. 1 )
dz 0 00

SFrom the energy relation,

2eV m c. (C. 2)
00

solve for v

+liv

/2-=eV 2 Vnvo = + z.(C. 3)

where

2
V 0 = 5.1 lx 1 0 volts . (C . 4)

vn e

Substituting Equation (C. 3) into Equation (C. 1), and by binomial expansion

to the first order, one gets

d 2 v Jo 1  J m/-___

dz2.= = _o F• [ l _rZ]
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Multiply 2(dV/dz) on both sides, then integrate:

dV r [fv-i/z d3 1/2
= 2L. dV

-:.vz C -Z Tv +f 4V

J0

,o i/z iv=4• 7- +- + +C ,CJ mo
0 Ze 4OVn

where G--, when V 0 0; therefore C = O, and

- 4= J m 1/4 /C.
dZ E 2e 8 8 Vy~

Integrate Equation (C. 6) again to get

S(4J/2J V - -- o-) d, + 2.
~1/4 8 Vn 1~

or

3/4 7/ F4_ - J m,•/ ,/• / o L0
3/4 8v 0E [Z z

n.4

where V= 0 at z = 0, therefore c1 = 0. Therefore, we have

3/= 0 (C. 7)

Square Equation (C. 7) to get the final expression for the relativistic case,

4c= - T e z V .
0 d228 VnI

But in the nonrelativistic case,

-63-



4c /e V3/2So (non) = -' - m d2 (C. 9)

therefore Equation (C. 8) may be written in the following form;

( 3 V.) . (C. 10)0 O= o(non) 128 Vn

To find the slope of the static characteristic, we can take the derivative of

Equation .(C, 8)';

W 0dJ (3 -1/ 3 1 5 V-3/)
dV 8 Vn Z

= - vl/2, 5V) (C. 11)2 2 28

where

04 [2 e 1
K4 C = -; (C. 12)

then 3V) Vm

dV _Z 1 z V3/2 \ 28 •Vn
dV/( V 3 1 0 2 VVn

(IJo -8 Vn ZVn
2 v 3/2 _ 3 v) 1+ v -(C.13)- J o 28 V n 2-8 V--

Substituting Equation (C. 20) into Equation (C. 12), we obtain

3 jo(non) 28 Vn rc (non) (l28 Vn)

(C.14)
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where

r c (no n) Jo(non)

Li is, the :slope of the static characteristic of'nonrelativistic case,

L
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APPENDIX D

RELATIVISTIC BEAM-LOADING ADMITTANCE IN A KLYSTRON GAP
BY THE BALLISTIC APPROACH

The equation of motion is

dt- /_ = -.- E (D. 1)
2VZ -M 0

Expand

V

( 1

by Taylor series to the first-order; since v vo0we get

v v0

v ~ vv0 0

V 0  + 2 (D. Z)

Separate Equation (D. 1.) into d-c and a-c parts and express the a-c part as

m- Vi v 2/2l v 2 /2 dr mo 7_ .
0 sn

"c v

(D. 3)
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where v is a constant (since E =0 for VA V in the gap) and is
O1 0A B

E =-V 1 sin wt/d.

4 Integrate Equation (D. 3) once:

F
v 2e V ,vi = mS (" -Cos Wt)+ c 1

2 0 "

where t= t, v= 0; therefore

00

'. O7 CoW

and vI becomes

23/2

( - coswt. - cos Wt) (D. 4)
0 J ~

The tOtal velocity should be

dz 3/2

V v
v dt v +v v + 0 (Cos Wt Cos Wt)

S0o

(D. 5)

Integrate Equation (D, 5) again:

Z v Vt + t - cos, Wt _sin wt + c2
0 C2 0 W 2

where t= t, z= O; therefore

e v , )/2

c2 -= - L sinWt -t cos Wt v t
0-W 0 0) 00
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hence we have

/V 23/2

z=; u~-t. -1 ) (t t'::) .Cos W~

+ eV1  
O2 3/2

+n wd -(c* (sinwt - sincu.t) (D. 6)

By the energy relation,

mC -2 eV (D. 7)

C2

Solve for

23/2

= ,(D. 8)

and

2 2 e V 2-_ _( D._9)v0 -m° +VV

where •Tn = mc 2 /e.

0 

0

If we let VI/ V- a , and d-c' transit angle e = wd/v°0 t e

e1 e r1 e 0l
0 -mv -- m v2

00V 0 0 0
0
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Substituting Equation (D. 9) in the preceding equation gives

2
e V Vl v° QVo 1+

e .V T 0V av0 VnD. 10)
o, Zm - 2 e0 + - V 0 +.V

Then z in Equation ,(D. 6): with Equations (D. 8) and (D. 10) will be

0o 1
z vo(t- t) + .,° +(tt Cos 'Wt

+ 0V 
0

a v 0

+ (sinwt -sinwt) . (D. 11)
n V

If T is the -transit time for the gap, t t 0 and gives the re-

lation,
d 6

T =.- + - (D. 12)
N0

The first term in Equation (D. 12) is the d-c transit time, and the second is

the a-c transit time. Substituting z = d, at t = t + T into Equation (D. 11),
0

where T is given in Equation (D. 12), gives

d1 co s' (Cat 0
d. d+ €o ii+,i ._ i. +

0
k2Vn/\ VnI

+a 1 [sin(Wt e ) -- sin wt 13)+• ~ +ZVn ' n80 " "

• . -6T) equal
where we have neglected a8 terms, and approximated sin (wt -.e. e
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to sin(wt - 0o an' c-os(wt - o - 6) equal to cos(wt - 0 since we are
0 ~ 00

basing our derivation on small-signal theory.

From Eqldation'(D. 13), solved for 6 :

2 1 [sin wt(1 -cos 0 -0 sine
z 0 Vn

+cos wt(sin 0 -0 cose)] . (D.14)

By RamoI theorem,, each electron induces a current pulse, ev/d, into the

circuit across which a voltage V1 sin (t is applied. Now our current at

entry is Jo The current induced at time ItI as a result of the charge

entering the gap in the interval ] dt I between times It I' and t + dt is
0 0 0 0

:di = -- v. dt'.
d 0

hence
t

i = 0 v dt° (D. 15)

d t-

and with v given in Equation (D. 5), we have

J [. t+ -o v0 nwt
_a -ot 0 t cisw

[ 00 20 i+ V V) w t 0~~~
n\ z7--) ýl-Z °

j 0FvOT + CV01 (s-inwt - sinW(t-T) -CS
d L00 + 1 +ZI--

With the value of T and8 ,given in Equations (D. 12) and (D. 14), we get
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i =j 0 1+ a (2(1(.- cos 0)-0 sino) sin wt

+ +(Z sinG -.0(1 +cos0).)Cos WtU1o

(D. 16)

Compare this to the following form,

i = Jo +v 1 Gsinwt+V1 B1 cos Wit (D. 17)

therefore

G[2.(l -coso) - e sino)j , (D. 18)
2 + 0 0

Gý
B 1 0 12sino-E(I+.cosO , (D. 19)

202 V ý

where

J

0 -
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LIST OF SYMBOLS USED

a magnitude of applied voltage _ n

d-c beam voltage Vo

S6n transit time correction factor for nth gar

W n angular frequency of applied voltages, V•n n

t •m = d-c gap-transit angle for mth gap and angular frequency w2

gap-coupling coefficient for < gap. and w

k" = bunching parameter - 0 MPmu mm
0

th
r = the n gap transit time

WA2, A3 j the four planes of reference in a two-cavity klystron

r OP rar] = the Fourier. coefficients
br

C = velocity of light

th

dn = the length-of n gridded gapnX

eerfx) -- error function(x) . f e-t dt

1 = d-c beam current

i = total conduction current at plane An n

thore
5 = Bessel function of first kind and p order
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m = electronic mass

m = electronic mass at rest
0

Re = real part

t = time tha., an electron arrives at an arbitrary plane Z within the
gap

th
s = the n drift distance

n

ii m~~~~~~thdrfspcananurS" = the normalized drift angle for the m drift space and angular
m frequency w2

tn = time at which an eli'ctron passes plane An

u° = d-c electroa beam velocity

th

= velocity of electron, at an arbitrary plane Z in the n gap region
u v eloc'ity of electron at an arbitrary plane Z in the first gap

v1  = total electron velocity at exit from plane A

V = d-c electron beam velocity

Vn = amplitude of signal

z = arbitrary position co-ordinate of an electron within the gap
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ABLTRACT

This investigation uses ballistic theory in the analysis of the behav-

ior of an electron beam passing through alternate gap and drift regions,

with the gap regions having excitation fields. The analysis develops the

response to a, complicated frequency spectrum of the drive signal. First

the double frequency case is analyzed. Relativistic effects are taken into

account, and their influence on the current response studied. Then the

theory is extended to the more complicated case of a Gaussian spectrum.

The first-order bunching theory is used to plot current response curves.

An estimate of the pulse distortion resulting from nonlinear electron beam

dynamics is obtained from the curves. It is also of interest that the envel-

ope shape of the exit current is almost completely independent of the r-f

frequency. The large-signal, finite-gap analysis is carried out, and the

results extended to the multiple-cavity klystron.
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I. INTRODUCTION

A. OBJECTIVE

Many stages of development followed the invention of the klystron

"by the Varian brothers in 1939. Until now, most of the analysis and dis-

cussion has been limited to the case of a continuous-wave drive signal.

The purpose here is to open the door to investigation of the numerous prob-

lems associated with the use of pulsed microwave amplifiers for amplifi-

cation of nanosecond pulses whose pulse lengths are of the order of several

cycles of the r-f carrier frequency. The main concern is with high-power

amplifiers with average power capabilities comparable to conventional

pulsed amplifiers; thus for comp arable repetition rates, the peak power

would' be higher by the inverse ratio of the pulse lengths.

Several factors may be important in determining the pulse response

capability of high-power amplifiers such as the klystron. It follows, from

Fourier analysis, that a long pulse of constant carrier frequency includes

a narrow bandwidth, while a pulse that is short in terms of cycles of the

r-f carrier has a broad frequency spectrum. The spectrum of the long

signal can, however, be significantly broadened by introducing modulation.

3Klauder showed that to utilize the transmitting tubes efficiently, this modu-

lation must take the form of frequency modulation. By this method one can

introduce the frequency-spread characteristic of a short pulse within the

4
envelope of a long-duration signal. Klauder also showed certain advantages

of short constant-frequency r-f signals over the long signals with linear

frequency modulation. This emphasizes the importance of nanosecond pulse

studies. One of the problems that arises is that the broad frequency spec-
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trum associated with the short pulses might be affected by the bandwidth

of the circuits associated with the amplifier, which will limit the response

and therefore cause distortion of the pulse. Operation of the amplifier at

maximum efficiency entails nonlinear behavior in the electron beam dy-

namics. This will cause the frequency spectrum of tI output pulse to be

altered from that of the input pulse and produce distortion. Ballistic theory

will be utilized to determine the response of klystrons to the complicated

frequency spectrum, and lead to an estimate of the pulse distortion.

Studies in this direction will provide a solution for the conflicting

requirements of long range and high resolution in radar systems. Re-

solution depends on the transmitted pulse bandwidth, and nanosecond pulses

will, no doubt, satisfy the conditions for high resolution. For long-range

capabilities, large power requirements are necessary; hence, high-,power

nanosecond pulses are expected to solve the two conflicting radar require-

ments. Radar systems that yield simultaneous information about the range

and velocity of a target would be useful in certain applications. Klauder 4

showed an inherent ambiguity in a simultaneous determination of both the

range and velocity of a moving target, when using the so-called "chirp"

scheme. If the transmitted signal with an ambiguity function that is highly

peaked only at about t = 0 exists, then high resolution is expected in both

range and velocity. Using analogs from quantum mechanics, Klauder showed

that the sequence of signals, f(t), that satisfy these conditions are:

1/4 -t 2

f(t) = '' H.( N ) e 2
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where Hn (z) represents the nth Hermite polynomial defined bynd

Hn(z) = (_ 1 )n ez 2 d e-z2
dzn

When n is taken equal to zero, the Gaussian envelope, on which this analy-

sis is chiefly based, results. Further details on the Gaussian spectrum are

given in Appendix A.

B. MODEL

Since a one-dimensional model of the electron beam is used, a uni-

velocity electron beam is incident at the entrance plane z = 0, moving in

the +z direction in confined flow. This assumption of a very strong longi-

tudinal magnetic field will depress the potential at the center of the beam

so that peripheral electrons travel faster than axial ones, introducing a

phase difference between the radio-frequency current carried by different

beam segments. This difficulty is overcome by assuming the existence of

a thread of positive ions along the axis of the beam, just sufficient to neu-

tralize the charge density of electrons; thus, the effects of depressing the

potential across the beam caused by space charge are neglected, and so

also are variations in electron velocities caused by.. thermal noise. Elec-

tron velocities are assumed small compared to the velocity of light, per-

mitting a nonrelativistic treatment of the problem. In the analysis of a

double-frequency signal, however, the change in response caused by rela-

tivistic effects is studied. The electric field is assumed constant through-

out the cross section of the klystron beam.

-3-
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II. RESPONSE OF KLYSTRON TO DOUBLE-FREQUENCY INPUT

In this section, the response of a klystroi, to a double-frequency

input will be treated. The signal is. V = V sin It + V2 sinw2 t. The

A'1 JAI AI A'

GAP I GAP

I I DRIFT REGION .' 1

I I =I

'I I I

four planes of reference, in a two-cavity klystron are represented by

A0 , A1 , A2 , A 3 , and the subscripts o, 1, 2, 3, respectively will be

usedý to identify quantities in the respective planes.

A. FIRST GAP

Applying Newton's second law of motion, we have

d2 e VI e V
dz- I sin t + - sinw t

dt 2  md 1  1 md, •

therefore

dz -e VI eVz
dt - cosIt - V cOst + kI
dt mdl I mdlW2
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where k is a constant to be determined from the initial condition; at t = t
1 00

the velocity dz/dt = u 0 ; therefore

deV coscWt cost eV 2 I.coswt c
d z = + e o+ d L - - . 3dt 0 mdl L 1 mdl W2 4Z

(2. 1)

Integrating again gives

Ie V, cosI lto eV cos ¼•to]Z :Uot +[ /m-- ¶O + 2- j_

rn ,2 sinw t + dle sinV, t] k2

2d~

where k 2 is a constant, evaluated by inserting the initial condition: at

t = to, the distance z = 0; therefore

F eV, coswit eV 2  1
2, = [ + + cos W 2zto (t - to)

- ,2 snwtsn(,iIt 0 ) 2 .(sinw 2 t -sin~w 2 t0 )md 1 md dl-

Putting

V 1 ' V a 2  d I 1 2 d 1
0 0 0 0

gives

Sz = + a,1 cos Wit + ----- cos wt (t- t) +0, o ý 1@ 0 2 21



+ a-I --0 (sinwIt 0 sin m1 t) + ,,u (0 sin t -s t) (2.2)
Zdp i•i Z&1 2Z

The distance is z=d at t =.tI . where

tl1, = to + r 1 ,

d I
r, = transit time in first gap - u +

i= correction factor,

- m+n m and n being two numbers defined by -w I = 0 and

(w = nw0 l,

Substitution of this condition in Equation (2. 2) gives,

a 1 + a2 C os
d = u coswto + - c t

.11  a 0u
CLI u° a 2 Uo

+ (sin t°1 t - sin + 2 into-n t) (2.3)

The following assumptions are made:

Cos W 0 CO
co witZ i) s in( 'I'

sin (,)t sin
Cos - 1 W. ) = Cos (wt -

S~-6-



The products a16 1 and 261 are negligible, and Equation (2.3) reduces to,

u°61 ald . aIdl a I u 4
Scos (wCt-s 4) +.- cos IS2 t-,i) +..JIFIs- 4sin(Wt 1 t -)-sinwlt]

a .o [sinlwzt - * i) - sin~zt

2 2d

idl (coswItcos,+ sinw t siný' + (Cosd W* t coSýl +'sin t sin")

•i2ý1 1*I

a u+ .2u°, [sinw t Cos cos 1  t sin4• -sinw•ti

I ,

+ iw Co' csin2 t +i i ~
therefore

cu t 1i -Cos sincua sinbyt + (sinRa.oss cost t

10 n dz ifcsl ~ s eVl s /nct+osin 1t cos icozt

-7-S

(2.4)

Thus,. the, expr~ession -for .the -correctio~n factor as given-by Equation (2. 4)

I is a superposition for each frequency, considered separately. The induced

current is calculated by R~amo's theorem; i. e.

St t

iiH1 "1 md. \1l
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+ 2 o 2to 0o" _ 2t dt
md 1  W(4 : 2 t)

*0 1u- sinwt - sinw,(t - rl)
u d r1 + ÷ __'1 _ r csIt

Io si L ~ ________ - rl ost

+ iu [sin2Wot- sjnw(t"ri) , ri coswzt }

After simplifying, and in the process neglecting m6 1 cos Wt and' n6 cos Wot

"we have

1 -cos sin', (sin i1 Ic l
S+- I-- sinw t C W

+ .a- ) t 1 1 + cos W]
• lc~b isn~b sin') sin: 1• +- 8 7; c ?t]+~ ~ 1o2 :, .. '' 201

(2. 5)

From Equation (2. 5), it is evident that the effects of the different irequency

components of excitation on the induced current are mutually independent.

The double-frequency case can therefore be extended to the multiple-fre-

quency input, and it can be concluded that the different frequency effects

are independent of each other, subject to the approximations. made in this

section.

B. DRIFT REGION

Thus the electrons enter the drift space with both velocity and current

modulation. From Equation (2. 1),

-8-



tl_ os0) cow + 2 61w
U1  u° + mdIw 1 [ ( 1 61 I + 2  2

S-Cos W2 t

Resorting to approximation made in Section A gives

sinaI sin -1
1 =u+ sin it +- Uoaz , sin Zt

1u- +0 U1 o_ 1 o 2 s 1t2.

2 2
1(2.6)

Putting

sin1 sinp1

2 _ 2 -

2 2

'where and are defined as the gap-coupling coefficients for the re-

spective frequency components of excitation, gives the time of arrival at

plane Az as

- t + Si

u 1 +•- a.i31 sin hltl-+2 / +1- Q,,si~~tU0 + T t n t 2 2 a 2 P l s i n ( W 2t -I _

For small excitations, we get

S F/
t t + Uo -• Pi sin iti - a-+-L2•l sin( tl -

2 1 (u2 21



dt? • •CiL lagl
- 1 + -- [ - cos I - c - Cos W 2 t1  )

dtI uo2Il t

The equation for conservation of charge gives,

2 i 0 (2.7)
dt 2  dt 2  dt1

dt dt dt1 1 dt

dI 61

Again t=t + r t + - + ; therefore
o o

dt 1  d /61

dto dto w o0

as d is independent of to ., and

d 1 +-al - sin C co2 Cos •t n-4cos4 sin (to+

dt0  
20o1,

So 1 1 S 3 cos -s n ' " s t+

1= I - cos t ) -( c tl

....10-



2lz [7 , II 1 II\ I s i

+ [( - silniti cositt co( 2 0 + 1

•I (,( . 8)

where

S WtS w2: S I

S1 Uo S o

With
Wi hsin ( t + @') sin (Wlti)

Cos io=Cos

and with approximations similar to those made previously, the current i 2

can be expressed as a function of tI , and hence t 2 .

The periodicity of i 2 is obvious, and therefore i2 can be expanded

in Fourier series as follows. First, t 2 will be related to to, as follows:

t t +dl SI + S a1 P; sin t + 7-aZP1 sin •wto +

i. e., the term 6, /O is nepglected, while the approximations with regard
10

to the sinusoidal terms are justified; then

i -2 a + a r .- r . + b cosn t

r=l r=l

where

o o

S 0 00

If



and:

a d 0° cos r(wt 2 - S,1 - cl) d(c~t2 )
1 0_ T d to

I I Cos r 't k sin (mw t+ -'sin t d(w t
T" 0 (0 0t 0-l o o 2 0l 0t+ 2 0 0°)

brr

r Tr jW 0o 1 0 0 2 1 2 0 0

(2.9)

where

2 2

The coefficients a and b are simplified by a method indicated in Appen-r r

dix B.

The general equation of motion has to be formulated for the calc'ila-

tion of the induced current i.n plane A 3 , and the method adopted is similar

to that used in the first gap, with only the initial conditions different. This

is done later for the more complicated Gaussian spectrum and will be

omitted here. The main purpose of this section is to show the absence of

intermodulation of the different frequency components at the output, subject,

of course, to the approximations made. It must be stated that the preceding

analysis was based upon frequencies w 1 and w 2 not being very far from

the central frequency w0 in the frequency spectrum, i. e., the numbers m

and n should not be much greater than 1. As the main purpose of this study

is the extension of this analysis to the response of a klystron to short pulses
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with a narrow bandwidth of frequencies,, the assumptions made are com-

patible with the condition desired.'

[ No account has been taken of the relativistic variation of mass with

velocities. This problem becomes especially serious when the beam voltage

is large in high-power klystrons aný where the very hard X-rays produced

present an additional hazard to the operating personnel. A simple treatment

will be given of the relativistic effects on the response, using the same

model as before.

According to Einstein, nothing can move with. a -speed greater than

the speed of light. Newtonian mechanic.s combined with this postulate de-

mands that a mass subjected to a constant force must be accelerated till

the speed of light is attained; but, as the force is still present, the speed

must still increase, which is impossible. This ambiguity is solved by ac-

cepting the increase of mass with velocity, and assuming that mass is a

manifestation of energy, the two related to each other by the famous equa-

'2
tion w= c m, where c is the velocity of light.

An increa-se in mass, din, when accelerated, results in c idm

= dw = F ds, where F is the applied force over a distance ds. Newton's,

second law gives

d
F =- (mv)

dt

therefore.

c2fdm= f (d mv) ds = fvd (mv)

Equating the integrands and separating variables, we have

dm v dv
m (c 2 v2

-13-



Assuming that rest mass equals m0  gives, by integration,

m
o a (. 10)

the equation that demonstrates the variation of mass with velocity. In this

case, Newton's force equation gives

Wr - = eE

With u(z, t) = u (z) + v(z) ej~t where

u(z, t) = total electron velocity,

u 0((z) d-c beam velocity,

v(z) = amplitude of a-c velocity.

The basic assumption will be that v << c, which is justified, since

the signal voltage is not sufficiently high in practice to make the a-c velo-

city appreciable in comparison to the speed of light. Using the Taylor

series expansion, we haveuuo o
u _ 0  + vej(Ja d u 0

/2) duo '12 2

ve3~t
+

-.14,-



therefore

d u0 + ve j~lt e

dt 0 + I . (2.11)

[
As the excitation is variational, separating Equation (2. 11) into the d-c

and a-c parts gives,

dt ___

d ye 1~ V sn + V2 sinw t] (2. 12a)

_j
therefore

V I coscw It V 2 cos W 2 tV a -c0c2. + + k 3
7)- C m 0di L 1 2 ]

where k3 is a constant evaluated from the initial condition that at t = 0

V a-c = 0. Finally

Vlac = md 1 (coito 1cos t

o1

coswz n~+ •2  2 ]

____ ___ ___ -15 -



The total velocity at any instant in the gap is

dz +
dt 0 la-c

Integrating again and using the initial condition that z = 0 at t = to,

we have

( e cs 1t 0  2 2t 0Z20 m d + l ( to0)

( s in lto V 1  sin w1 to V 2  sinc 2gt0 V 2  w 2 t+e ~ md.sinA 1  - 2 +___ _ •2tO\

Now z = d at t = t1 =t 0 + 1. Following the procedure of Section A of

this chapter, and making similar approximations, we obtain the expression

for the correction factor in this equation:

6{ (l•l cos 1 sinP) sinwlt + (sin - cos <)cos W1t

a2•°,, -cos 1 - sin in• 1t + (sin p1 - p1 cosK'1 cosWlt
241•

3/2

O-2 .(2. 12b)

Equation (2. 12b) is very similar to Equation (2. 4) and shows that the

correction factor is only multiplied by a constant I- u c 2 when rela-

tivistic effects are included. Again, the total current induced as a result of

-16 -



f the passage of electrons in the interval t = t - F 1 , and t = t is•! '0 0

I t
i -- u dt

t-r

Carrying out this integration as in the nonrelativistic case, we have

/2.- s in t t+ [_s ,nI (I+ cos• s•
I1 c+s, 1 - ")sinw) 1 t 2+ (1 - "cos tI0lIo - 2 0 oz€'2 2~ 11 '-€ 2€i

siwcos€Il s inI s .n c 1 co-u 222 , 24" 1,

(2. 13)

From Equation (2. 13) the relativistic effects on the induced current

in the first gap are very clearly observed. The explicit effect on the r-f

current resulting from electrons at high beam voltages subject to the simple

approximations made should be noted. For a particular beam voltage, the

r-f induced current is lower by the factor (u 2/c23 when the rela-

tivistic variation of mass with velocity is taken into account. A curve has

been plotted to show this effect (Figure 2).

For low voltages and hence low values of uo, the factor (- uo/c 2)

is equal to unity, and the result becomes similar to that derived for the

nonrelativistic case. For uo/c =T-

0 = 0.999

c- 

7

' -17 -



At a beam voltage of 104 volts,

z-3/Z 3/2

0 0.94

._8

.>6

'. z

j4 5

10 10 10 106

BEAM VOLTAGE EQUIVALENT OF VELOCITY

Figure 2. Graph Showing Relativistic Effects on Current Response.
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III. BALLISTIC ANALYSIS

A. FIRST-OR1DER BUNCHING THEORY

The problem under consideration is formulated as follows: A beam

of parallel electrons which have been accelerated through a potential of V.

volt.' is passed through the grids of, a resonator across which there appears

a voltage Vle-at2 sinwt,.. The resultant electric field is assumed paral-

lel to the electron motion. Since the velocity of an electron is proportional

to the square root of the voltage through which it has been accelerated, the

velocity with which an electron emerges from the first, or bunching,, resona-

tor of a two-resonator klystron will be1

Va = u + sinuwt = a, eat sinwt

where u = J V is the d-c beam velocity, PI is the gap-coupling co-
0 m 0

efficient (taking into account the effect of the gap transit angle), and a1 =

VI/VO. Here P, may not be related to the gap transit angle in the same

way as for the sinusoidal case, but it obeys the general definition of the

ratio of the velocity gained in the real gap with V across it to the velocity

gained in an infinitely narrow gap with V across it and, as such, is always

less than 1. The time taken by an electron to move a certain distance along

the beam depends upon the point on the cycle at which it passed through the
resonator gap as well as upon the magnitude of the gap voltage. If S1 is

the drift length, to, the time at which the electron leaves the first resona-

tor, and t 2 the time of arrival at the catcher; then

-19-



S1
tZ = .t+

1 -at 2  1/2

u ° i + a IPe 0 sint

Now, if the modulation factor al is small compared to unity; then the fol-

lowing approximation is reasonably valid:

S a -at
t to +- - e sin wt

o u0

To find the current associated with the electron bunches,one.must

remember that the principle of conservation of charge applies to electron

bunches for an interval with corresponding departure and arrival times. The

electron stream is subject to the conservation of cha'rge, so that

IodtoJ = JizdtJ

where i2 is the catcher current; a-,nce

I
0

dtd-- .
I

0

2 2
-aat -at

0

I 3 - at k o cinst +2 e o 0

0u o
I 0

1 -k cose -@ _ 2. e sine@
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I[
where the bunching parameter, S As this expression

is aperiodic, it cannot be represented by Fourier eries, contrary to the

analysis carried out by Beck for the pure sine wave. Since the catcher re-

sponse is desired, it has been found convenient to plot the output current

versus t2 for different bunching parameters, similar to the treatment

1given by Spangenburg for the sinusoidal excitation. Since i 2 = f(8o) =

= f(- 0) the curves are expected to be symmetrical. If the Gaussian spec-

trum is represented by Ve at cos wt, then

I
i2 o&2 .

0

1 + k e .sin ° + - e co-s-i2 o

The choice of a/w is governed by the following consideration. The
eat

envelope has its maximum value at t = 0 (since the envelope is V e cos

wt) and is supposed to fall to 1/e of its maximum when wt = 1O1r, so that

10 r-f cycles are enclosed between the points where 'the amplitude is i/e

of the maximum value; therefore

a (10i) 2 a _ 1
W2 V2 (10I, 2)
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Graphs have been drawn for the output current versus exit time for differ-
"at2  i~t n

ent values of bunching parameter for the envelopes V 1 e sinwt, and

V e-at2 cos wt. In the first case the infinite peaks occur for values of

G° satisfying the transcendental equation,

Sa° ) ae 2

os e0 - 2 sine = -e

The values of e0 at which infinite peaks occur are found graphically: For

k < 1 , there are no infinite peaks, as is evident from the equations also

(Figure 3); for k = 1 , one infinite peak occurs (Figure 4); for k = 1.5,

there are 14 infinite peaks (Figure 5); for k=2, there are 13 infinite peaks.

This can be justified as follows. In the pure sine-wave case, two

infinite peaks occur for k > 1 ; hence, for simplicity, we associate two in-

finite peaks with two peaks of the excitation signal. In the Gaussian en-

velope, the seventh peak occurs on either side of t = 0, when wt = + 6 .5Tr.

-at2  0 0

When t 0t = 10w, then e = i/e ; therefore when wt = 6.5w, then

-at
2

0 1
e

0.425e

The response for k = 2 has not been actually plotted, for it is not ex-
pected to be very dissimilar from the k = 1.5 response plot. The num-
ber of infinite peaks, however, were determined by finding the points of
intersection of the curves:

/ ae o aez

cos -2 s a - e
os 0 sin 0 andIe0

0 2 2
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1.0

V= Viiot sin W

0

25

SI--

1.

w

SI-C

10

0.5

EXIT TIME Wt 2 -S

Figure 3. Output Current i2 versus Exit Time wt2 -S.
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Figure 4. Output Current i 2 versus Exit Time wt2 .- s.
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The value of k when wt = 6.5w (if k = 1.5, when t =,O) is

1.5 1.5
k6.5 e0.425 1.5

Hence, 14 peaks are. enclosed in the region for which k > 1.

Again, the ninth peak occurs on either side of t = 0, when wto=

so that this region encloses 18 peaks. The value of k at wt° = 8. 5r (if

k = 2, at t = 0) is0 0

2 2

8.5 = e 0.725 2.02

Thus, the occurrence of 18 infinite peaks for k= 2 is justified.
2

-atIf the envelope is V 1 e cos wt, no infinite peaks occur for

k < ( (Figures 6 and T). For k = 1.5, there are 12 infinite peaks (Figure8).
2- at2

This has also been justified by a process similar to the V e sin Wt

case.

B. KLYSTRON RESPONSE WITH VARIABLE GAP LENGTH

From Newton's equation of motion,

2 e V 2d z _ 1 -at CsWm - e co sw.t
dt d

hence

dz ef 1 -at2
- e cos wt dt + C

dt J md

where C is a constant, When t = t ' then dz/dt= u Thus,
-2
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t
0

Uf m e cos wt dt=C

from which
1.

teV1 2dz e -at 2

= u + - je cos wt dt
dt 0 md

hence the exit velocity u1 from the first gap at t = t1 is

i•y e V1 -at 2

u U + • e cos Wt dt

t
0

The time of arrival at the catcher, if SI is the drift distance, is

St2 t t o +

tt 1
eV 21 at

u + Jf e cos wt dtSo m d
t t

therefore

ti-
= St 1 -at2

,t = t + 1 + e cos Wt dt2 o 0 u md( f

t

Here an approximation will be made to permit analytical computation:

t= t + r, where the transit angle r is (d/uo) + (6/w).

We assume here that 6 = 0, so that r = d/uo. Again for small

modulation, the following expansion is permissible, at least for a first ap-

proximation:
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S 1  ( e V 1  -at2
t t +e coswt dt

0

dt2  S 1 eV a(t+r) z -at 2
0 = i +-. [d-e cosw(t +r) + e 0 cos (Wt0dto 0 o2m

0

SI eVl k

0

where % =d/uo 0 and k' = Slal/2, hence,

e a 2a
dt z k " %2 C2 o C e
dt0 00o 0 0

thus

I I

2 0 
0

2 dt2 a22

Sdt 1 cos (0 +0 -e Cos 0
00 0 0 0

The above expression for i 2 , though approximate, does give an idea of the

catcher response at least for small signals. •

The expression for i2 becomes a poor approximation for -large gap angles
also. The graph of i,2 versus 0 with 5 = iT/2 has been plotted (Figure
10), taking k = 0.5, andi 1.0; and t~e differeonce between this and the first-
order bunching theory is obvious. It has been found convenient to plot i 2
versus O0' in this case, rather than i versus 02 as we are only in-
terested in an apprcximate estimate of the response curve.
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C. RESPONSE WITH FIXED ENVELOPE AND VARYING FREQUENCY

Using the first-order bunching theory, and taking k = 0.5, we have

plotted the catcher current response for a fixed envelope for three differ-

ent r-f frequencies (Figure 9). It has been found that the shape of the

response envelope is almost independent of the change in frequency, es-

pecially at high values of W//aJ.
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IV. LARGE SIGNALS AND FINITE GAPS

The ballistic analysis for large signals with finite gaps is carried

out as follows. Analysis is based on a two-cavity klystron (Figure 11).

A1 I A Al 1A
01 21 LA°I A I IA

, I I I

ELECTRON I GAP1  I

BEAM ~ GAP G> DRIFT REGION II
II I
I II I

I I-z~' dI

Figure 11. Schematic of Model for Velocity-modulated Tube.

In the diagram, A0 , Al, A , A 3 represent the four planes under con-

sideration. The numbers 0, 1, 2, 3 will be used to identify quantities in the

respective planes.

A. FIRST GAP REGION

1. Induced R-F Current

Confining our attentionfirst to the motion of an electron in the first
2

gap, excited by a Gaussian pulse V1 e-at coswt, and applying Newton's

second law of motion, we get

d2z e 1 -at2
- e cos Wt

-3 md
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therefore

Refe-at + jwt dt + C 1

2-W -a (t--j'•

K e-4a Re 2 dt +C

where1 mK 1 t t dz/dt= u

where = eV /md and C is a constant. Now at t t to

from which C is evaluated; thus

2 t jt /2

d-.~ 
a 4"(t- - •

dz = K e 4a Re e dt + u

dt 1 0

t
0

K1w e2 /4aqý- "
u + R.Ke err f (- - err N -o

0-2 oe-erf (t - Za Lt0\1
(4. la)

{0

2-

dz -. KIe~ -/4a~. 2- 2)in•

-=-u+ ~ rf•t-erf, t +. [e_(at2 (at

-e sin- ) sty d(

Integrating again, we get

2 e /4a 2-(at2- ?
z= U0 t+ KI4 rf sIa t - erf' NIt + Y- )sin aty

2 o

,e-(ate sin N'ty] dy' dt + C 2
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where C- constant. This constant is evaluated by using the condition

that at z = 0 t = t ;therefore
0

t t 22-Ta

z= u (t-t + K e /4a jerfrtdt+ e(at - y )sinNr ty dy dt

tt o
0 0

K 2 f -(at2 -y2

K 1 T 2-w/4a + 7 e - sinaa- to dy

- •I- e-r 1/4 -trf• t e-i• ~ty d

When t 1 = + wdhere Also the transit time is on f tor0; therefore

1 t1 t1 1 u

o 2o

K _ 2 /4a 2 rdt 2 e a2

d u r + 1 - e+ erf•]fto + J eY )sinNi" tydy dt

0 0

0 (4. 3)

Supser dl +--1, where 6 is the correction factor; then wdl/o

=1.is the d-c transit angle. From Equation (4. 3),

t1 t1 -KI•1 2 t [o~-at-
€1~~ w 2w + 1+• ••e/4ato erfatdt ---O

+ 61 Fla - e fqa- t t + e- Y )s inN•]• ty dy dt
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dI 6l-w /4a 2 -(at2 - y )ý
____ ý 61 e r ~f0 -t + 0 i~ dj

2 4' 0 KN7t+. e si~ 0 y

Writing tI as t and replacing t by t 1  =t-•-- -- , we get

0* d 61 dl 60

1 1 1-71

00

t t12u e- I erfr a tra ut+7 )ikat

t d1 -_d

2 u 1/4 ýl din 61)

1 [1 (t - s (n a" 4d(}

0 0 0

InEquation (4.4), 61 is implicit, and approximation must be made to obtain

nn explicit expression for it.
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We ýshall assume that 1 is small so that

R. e err f [4a (t-u I a- .e [4

Nd ?1 •:f . j, _t

where J
er dl1

Now as r 1 is small compared to t, the following, approximation is justi-

fiied:

J erfNa tdt = + ) erfat

d 6

Uo0

W WW

f- f ( Y )sinNrty dy dt = (d1.. +-)f 2)sin- Nty dy

d1 S1 o o

u W
0

Substituting these in Equation (4.4),we have

81 = e- d, Re terf (4 1 -
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2 -
wd

e- 4a 1 " 1 t dUie jL W
"".".(oRe r- f--1-,ra

This equation obviously gives a quadratic in 81 , which might be complica-

22

ted to solve. Foeraa simpler solution, we will neglect tihe t term,; there-

ted to sove1 r" asmlr ou tin we• wil nelc he5 tr ,;tee

fore

KI - a .t.
217

(4. '5)

Thus Equation (4. 5) gives an explicit expres~sion for" &1 Denoting

Fit) - Ka1 e r t - erf di

2 a 2N- -

2

K 4

G ) e - a dR_ _ R.e erI t-

Grt- - _ w + e ,f 1: , ,r _ U _ -.• -

2

gives,
SFit) 2 (4.6)

1+ j-1 F(t) +G(t)
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According to Ramo's theorem, the current at time t resulting from the

charge entering the gap iii the interval dt between time t and t. + dt is
0 0 0 0

diu -0 dt

d1 0

where u velocity at time t. The total current induced is

t

i I /d 1  fudt

t I

Substituting Equation (4. ib) in the preceding integral, we havet 2
W r 2 2K 

e4a 2 sin' tyil - (uo + e e-(a rtf a-t-er f-t° + d -j)

-- 0

Io K1
(at 2 2

dI ojuP+ -2 e"4- r rf•' 2 -e(at-_ 2)sinN/:aty dj

0
e si -Nr t oy dy d

t 2 22
u1 r- + 4a 4a (at2_ 2odto+__•_2

~i e a rr r -

therefore - ~ :ftdo~ j ~ ~ i~~ yd 0j
K% u° i° W 2 -- (at- e-

I + e 4u .* NF d( + ) e0 Y L f [a--t t )yd nd t i

-37 -



t d t

l¶[W 4 a erfN4-t dt fo sinNIT dy
f- 0 A.fo yd

_-r"1 t- r,
(4. 7)

The above expression is considerably simplified if the following approxi-

mations are accepted as valid:

t

ferf ra t dt = r 1 erf 1 t

t-" 1

t 2 4a Z2/ "(ato2'- Y-) eat-2sn tyd

- f e sin~Ta t0 y dydt - rfI t Y sinNjatydy

This is very nearly true, especially for small gaps; then, Equation (4. 7)

reduces to

i t (4.8)

[ ELL + F(t)+

It is interesting to note in this case that the time-dependent component of

current i I is directly proportional to the correction factor 5I.

A more accurate, simplification of Equation (4. 7) than that given by

Equation (4. 8) is obtained if

ferf4f to dt = rF1 erf N4 - 2
t-
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"c: r1 err f Na- -

Putting this in Equation (4. 7), we have

2
I u b ~ K , ý T , 6J

+I _Jl+K e--' 4a + (. e e r f(f t - j
iI =1 Io +d -*-

-er [,Z (t - o"'
1u 0 d W

After expansion in a Taylor series, we get

2 
2 j0I a K, -" '0• dl + e'ail =!o+ o i +ReN

=I° + -- + Re e -o e•

0 K + (di /
1d 0 W j

If the 62 term is neglected,

1( - V-ut2 Vl 2-tZ

+1°0 u + V u°0 6 eatcos Wt +-4V d e cosa t 2 ,
1 =o0 d1 U WO~ V 4V

(4. 9)

where V = d-c beam voltage =-- u 2
0 Ze 0

2. Velocity Modulation

From Equation (4.1a), we have

2

K Wr2
v u + e 4a Re [erf N ta1 ' era- j
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Making suitable approximations to simplify solution gives

2 ett dt. 2 d+.ie ZI]a2

e• -Jt 4--- -- 1)2 T
oF f zNw(u

from which

V e cos wt 1  . (1. 10)

This is justified if the gaps are very short and the transit time small. For

larger gaps, a better approximation would be

Nat JW
2 qfa 2 1  e 1  d) jW]

then

e = 1 -t + _ e cos 1 -

u° o

0

The neglect of 61 in the exponential is reasonable when the resulting simpli-

fication in computation is taken into consideration. Note that when &1 = 0,

Equation (4. 10) reduces to
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v V -at2
- 1 •-I e cos WtIu 02Vov 1

an expression similar to the velocity modulation in the sinusoidal excita-

tion case.

B. DRIFT SPACE REGION

The electron beam enters the drift space with both velocity and cur-

rent modulation, as shown above, and it drifts in a field-free space resulting

in further increase in the harmonic content of the beam current.

Neglecting spac:e-charge debunching, we have t 2 = tI + (Sl/Vl)

where SI is the drift length; therefore

S
t 2 =t I +

uo + I e- 4-a rf tl -a, erf ,os to

Using the simplified expression in Equation (4. )0) gives

S
t =t+1212

Ud

u e -- + •e cs¢t

Fs i( +Equation ) 1(i4.resuls 13)
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This expression for small modulation becomes

2

Sdi
t tl + •o I o +. .) e Cos tI _-!

It is difficult to differentiate this function because of the presence of 65.

It is better to keep the integral in the expression for dz/dt rather than

divided into error functions; thus

2 1 t1 22 t2

Se a R.e e -( a dt

t I
S I K I - t I -a ( t, -

c tl +• I e a R~e e- At/,du 2u

t -

dtl T dt0

dt Si ° I -wuo/- 1ot1 Re e 1 a e
dt

1 u0

27

2 a (,t.ý41

2-4Z - ±9'

S-at 1\ 7-
ai 1- K 1  e 1Cos wt -e 0 cos'(wt

assuming that

e 0a Cos -) cos1w 1 - 1) e atiL)Cos (wt 1  )

(4. 14)
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therefore

i I

dtl S V -at -a (t,

1 e e cos Wt -e cos (Wt
_d Vi I 1-

L

But by Equation (4. 7), i is related to Io; therefore theoretically, it: is

possible to express

i = 1° f(t 1 ) , (4. 15)

where f(tl) denotes a function in t 1 . Again as t 2 is related to t 1 , as

shown above, it is possible to express i2 as a function of t 2 , i., e.,

i 12 1 0 g(t 2 ) . (4. 16)

Although Equation (4. 16) is expected to be very complicated, and rigid

mathematical analysis seems highly improbable in practice, a theoretical

formulation is not ruled out. It is desirable to expand i2 in a series in

such a way that the various frequency components become distinguishable,

but the obvious aperiodicity of i2 rules out the possibility of expanding in

a Fourier series, as in the sinusoidal case analyzed by Beck.

C. SECOND GAP REGION

At this stage, attention will be directed to the motion of electrons in

the second gap. The beam induces a voltage on the grids, and because the

voltage produces a change in beam current and velocity, we can consider

this behavior as a reciprocal relationship, so that knowing the effect of the
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voltage on the beam is equivalent to knowing the effect of the changing beam

upon the induced voltage. With this in mind, let us assume the voltage in-

duced in the second gap to have a spectrum given by the equation V2 e b(t + p)4

cos w(t + p), where p is a constant introduced to take into account the

.at2
possible change of phase with respect to the original envelope Vle coswt.

Although this assumption might differ from the actual physical conditions,

it is acceptable as a first approximation. The equation of motion in the gap

can therefore be written as

' d z b(t + p)

- K2 e Cos W(t+ P)
dt 2

therefore.

dz J b(t + p) cosw(t+p) dt 2 C3
7-1 = Kzf-c ~ )d

where C 3 = constant. Now at t = t,

2

dz = 1 -~ Fa - e (qa.u +--a Re [erf ( aer -

dt 0 2 eaf

Using this condition to calculate C we have

t

dz = K 2 f eb(t+p)4 cos'w(t+p) dt + V2  (4. 17)

.t2

where

2

V 2 = U + P- eK Re rf tI- -. erfr t -F
2 [
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Integrating again, we have

t
z=K e -b(t + P)dt+Vt + C4 (4. 18)

z= e' cos wtp tVtC

t 2

where C = constant. 'At t = t 2 , z = d + S therefore

t t

z = KJ erb (t+p)2cos (t+p) dt dt+V2 (t-t) + d+1 +

t2 t2

Now at z = d2 + S 1 + d1 , wehave t t 3. Also t3 - t = r 2 is the transit

time in the second gap; therefore

23 2

d 2 K2  e :W Re rf (t+p) - - erf r (t 2 P) - dt+V 2r2

t-r 2

Suppose

d 2 ' 62 Lidr"2 - u 0 , and V2- 2

2 2 u 2  2

where 62 is-acorrection factor for second gap. Then, by a process similar

to that used for the first gap, and with similar approximations, we have

JII

62 = - L •e• - . 2 R'e{erf [/(t+P) ° ] -erf-'U(t 2 +P) )
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F ~ 2

+ (R ev.e erf '(t + p) -

derf[ +P) + d erfl t•'t + P) -- er•-t2 + )-j• 2 u-'- 2 N

F2 (t)62 (4. 19)
2+F

+ 2 + G2 (t)

where

2

F 2 .(t) K 2v 2 Re rf [-(t+p) - erf I(t 2
2

2
K d

G02 t) 2 e ve 2 - erfl I (t2 + P) - jW
2

Thus, the, expression for 62 is very similar to that for 816.

As before, the total current induced as a result of the passage of

charge in the interval r 2 is:

3 d= u2 dt 2

t2-r

whereu 2is the velocity at any instant t in gap 2; therefore

t

1 uzdtz (\ili3 f d 2 2 t

t-rz ; t- :/
2 1
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t t

0 r rt udt0
d d u2' 2 dt 2  d

S2 t~rt-rI dt-

where u is, as usual, the velocity at any instant t in the first gap. As

we have seen in the above analysis dt 2 /dt 1 can be expressed as a function

of t 1 ; therefore

t t

Io dt I u dt 2 fudt0i3 d dld dt2 zz

t-rd to -r 
u

This a nalysis can be extended to n gaps, and n-l drift spaces; under

these conditions

Ift. t3t t t
- Udt2(n-1) dt 2(n -1) 2,(n -2.)dt2(n -. u d t°0

1 2n-1- dd....' dn tr n t t•If1

ýn n-I t- 1

(4. 20)

Expression (4, 20) is of theoretical interest since it indicates the dependence

of the final current in the: output gap upon the excitation imposed upon all

other gaps.
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.V. NONLINEAR SPACE-CHARGE WAVE ANALYSIS

Here also. attention will be directed to the Gaaus-sian excitation,

since the behavior of an electron passing through alternate gaps and drift

regions ,with sinusoidal excitation in the gap has already been determined.

McIsaac5 has deriVed a general expression for polarization in the drift

region. Using his symbols for the input gap and the drift case, the polari-

zation Z (T 1 , To.) in the drift region is:

r
T TO) e(r+ T ) sin(TI -r) dr

2D2

Replacing the sine and cosine terms, by exponentials and defining

erf x -2 f e-t dt

ZITI, ~ IT TT -

0
we hv

(0-+"'r
4Fy_- .(0+l) 1 ef~*~* .oil)e erf - Y(r+To),T

ZI(TI1ý-j T0)- y-d

+ complex conjugate) ,x n s1
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For the input gap region,

T 1

Zi(TT 6((r + T) sin (T r) dr
0 ZD f

0

therefore, for the case under consideration:

A = 1e erf T-1j -erfz761 -oY -- ýy) o- V 2 N

Iz

eT (rll]
-je" e-JT rf Terr'Ny o-

+ complex conjugate) (5. 2)

A method will be indicated to express the complex error function in

terms of real integrals. Consider the expression,

a-jb

erf(a-jb) 2 -z dz

0.

2.
in the complex plane With z x + jy. As e-z is an analytic function,

f f(z) = 0 around a closedpathofintegration. Hence integrating along the

path shown by the arrows gives

a b a-jb

fex dx - j e-(aY)Zdy f e dz

0 0 0
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-1.0 -0.5 0 0.5 1.0 t

Figure 12. Gaussian Envelope.

from which
o b-2 r. 22(Zy)+jyd

erf (a-jb) =x- e dx - 2"je-(a 2Y2 )+Zaydy

0

b b

erf(x) +2 e-(f _"y) sinZaydy-j.je (a2y )Coszaydy

0 0
(3. 3)

As the polarization has to be a real quantity, and noting that T -

T -Zo0=0 T- Z+ZI, we have Equation (5. 3) written in the Z, T co-

ordinate system as follows:

Z1 (Z, T) ZRe - jre' eiTterf [JT(r+T-Z+Z -j

er f I -(T Z + Z ) -I j z r-J

(a-+r)2  1

-je 4y e- -jT 1.rf [(,r+T-Z+Z50 j
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-erf FI-F(T.z+z') -j (-lj>(5.4)

where R.e represents the real part. Equation (5. 4) is obviously implicit

in Z and hence cannot be evaluated easily.

Assuming Z 1 to be small, a series expansion of the complex func-

tions will be made, and only the first-order term in Z will be taken into

account, A typical.term is expanded as follows:

erfFrNF-(r+T-Z+Z,) -j -)L vi •-j. -

=°"T) 1 + Y z erf1 (,+T-Z) -ej
w ere (rr-zT -• Z) -j 2-

where

erf1 = e- 2N+T1)j7-j

Substituting in Equation (5. 4), we have

T 0--_ L)

z(Z, T) A _ Re Y e e erf r+T-Z) j 1

+ l Z-(r+T -Z) j ([+_

+ -Y L e eiT erf [--(r +T- Z)

-I
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0-f+I) I Z1 e- '27 J+erf ) I(T-Z)

-+ -i. (T-Z)i-j G 2

(-+1)] + NZle 2 i. (55)

Now, putting

Nry7(r+T-Z) a 1 , N1-(T-Z) = a.

( _ =- b , b 2 _

z1 2 7 -

in Equation (5. 5), taking the real parts, and transferring Z to the left-

hand side, one derives an explicit expression for Z1 as follows:

-( a- -) 2 bi 12 2)
ZI(Z,ZT) = aL d c TYa +)e (al) 2 + ra-rf(a+- 1 )

bb0 J•

-e 1sina dy sin + 2-[e5cos 2ay

2 Ca+1-2

-e Cos 2a~y id cos T+ e e rf(a2)(al?)Z-erf(a)

-- a Z e- a-sin2a1 dy sin T

0
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So s Za,2 y -.e coa ay dy cs T
O'

A 2 2
+ Con2al b e Cos 2a2 b 1sin T

)K(a 2 b2)s: e( (...I)A [e 1in~alb -e 21 sinZa bI COsi

8 -b 2- b ( a2  
C O

8 2 2]

[ ("' 1 2 2 2]

-- -o 
2al 2  2b cs e)

if
b

(ae 2) sinam dy F(a

L 0

a b n (a2-2

! .. b

2Cos2a dy f(a b

then

Z(Z, T) A.n ( 2 a dn=TF(a,,

1 o1 bn FI 2 2)..

+ (al b f(adb :CoBsb

If 1, 2i 14_

l + e --Y {erf(a9-erf(a)-+.F(albz)-F(ab•b- sinT

[-
i -53-



+ [f(a 2 ,b 2 ) - f(a, bz)I Cos T))
T

( "[ eb - e• cossZaZb sinT+ -�e ( ) na)cos 2a1,11 e

811 22 COS2

2 2( - ,)
2 ab - e 2 -b co22) n T

sin2a1 bI e i 2a(2ab 2( -

C(5. 6)

No putng[ ab i

e 2 Z + Z1  2a a

( 2 2 2 2 ,b

[e"b2sinh2amb n - e = g 2-b2ain)2a2b2 cosT e-

(5. 6)

Now putting
•-r + T -Z + ZI) = a3

_az bZ
-4 [b2) '1

"" (2 n [sin2am bbn =G(a M sbn)

e nncos 2a m bn = g(a m b n)

erf(am). - erf an = E(am- a n)

we obtain

--(Z, T) 1- N- -bZlb)g(a 3, b 1)] + f(a 3,b) - 4 1i 4)n

+ {[TG (a 4 )b 1) -G(a 3 blI -E(a 3 -a 4 ) +F(a 4 , b) - F(a 3 bl) Cos T)b2

e- 2 ((e/ry [g(a3, b 2 )-g(a 4 , b2 )j +f(a 4 , b 2 )-f(a 3 , b 2 ) sinT

-54-



+ G(a•4• b2 ) -G(ao3 b2 )] + E(a 3 -a 4 )+F(a,3 b2) -F(a,4 b2 ,) cos T)

1 + • F (e (ayb -g1 ,a4 b, TsinT+ [G(a b)-G(a 4 ,b,)] cos

+ eb ý[ g(a 3 , b,) -g(a 4 b 2 )] sin T+ [G(a 4 ' b 2 )-G(a 3 , b ,)J Cos )

(5. 7)

In Equation (5. 7), the term Z occurs on the right-hand side. To obtain

az 1 /aT at a particular Z and T, therefore,, the value of Z has to be

obtained from Equation (5. 6) for the given Z, T, and then has to be sub-

stituted in Equation (5. 7). Thus, the ratio J a-c/J can be calculated.

Now, from Equation (5.5)

1 A Ff (e 1 (a.3bl)-g(a4, b,)j sinT+ [-G(a 4 , b)+G(ayblj cosT)

2-b 2~
e-2 [g(a4 b)-g(ay, b.) sinT + [G(ay b,)-G(a4 , b 2)jcosT) .

+ f7 y -b {[g(a 3 , b,)-g(a 4 b,)] sin T+ [G(a 4 ' b 1 ) -G(a 3 bl )] CosT

+ eb- 2 [gab)+gab) sin T + I G(a3 b,)+G(a b 2 )] Cos T .7

4 3 3 4 •11 - !]

(5.8)

Since

dZ 8z I +

dT 8z 1
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then

dZ1  b 1 2
dT A r~-(-I( fab) sin T+ [-E~a3 -a 4 ,+F~a4 bl) -F(a 3 ,bl coo

b 1(a 4 bz) f(a b, )] sin T+ ~E(a -a 4 +F(ab,b) -F(a,,b)j CosT

(3. 9)

The relative simplicity in the expression for

aU I

is observed.
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I

VI. CONCLUSIONS AND RECOMMENDATIONS

The ballistic theory of an electron beam has been developed, for

multiple signals, subject to approximations made to simpfly solution.

Some work, using nonlinear space-charge wave analysis, has also been

done and a comparison of the ballistic and space-charge wave analysis

should be attempted to throw more light on the problem. The graphic plot

obtained (Figure 9) which gives a value of 0.5 for the bunching parameter

indicates that there is pulse distortion. The saturation of the lower half

of the envelope indicates that the exit current is rich in harmonics, even

for low depths of modulation.

The theoretical study indicates that experiments can provide solu-

tions where theoretical formulation would be cumbersome. An experimental

verification of the theory should therefore be undertaken, using a set of

parameters designed to approximate closely the assumption of an infinite

beam and no space-charge effects.

Attention is now being directed to the generation of high peak-power

radar using nanosecond pulses of the Gaussian type. Once such pulses are

generated, the response of the klystron to them can be observed. Good

microwave amplification of these pulses would lead to their use in radars.
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APPENDIX A: A NOTE ON THE. GAUSSIAN SPECTRUM

As this report deals with the klystron response to a Gaussian enve-

lope, a short note on the Gaussian spectrum is useful., The analysis pre-

2
sented has been mostly based on the envelope g(t) = Veat coswt:

g( = Re f ve-at e e+jrt dt

a -a (t 2 + j ( 0 a ' )
=RVe 4f - Ve dt

--.

Ve 4a - .1 .F ek Z0a d t2Tr

(W - W) 2

-Ve' 44a

Thus, in the frequency plane the envelope is also Gaussian. The

Gaussian envelope is evidently economical in bandwidth for a given pulse

length, the majority of the energy being confined to a finite range of the

frequency spectrum centered on the carrier frequency. These factors to-

gether with the fact that a Gaussian pulse is easier to generate, are the cri-

terion determining its selection for analysis. It might be interesting to note

to what extent the envelope shape depends on the parameter a. Consider

just the envelope given by the equation,

2
f(t) = e-at
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then

2
W0

0 
eg( W ) N G ':i

Select a = ir/a., and multiply both f(t) and f(wo) by 1/N" ; then

Trtz

f it) e II

2
Q(a)

0

gl (W 0),= 'e 2T4r

The-area under the curve fl(t) = e-at2/rA-f is given by

A 27r g,(w0 )lo

S0

27r

2Tr

Therefore as a becomes smaller and smaller, the curve fl(t) becomes

taller and narrower and approaches a unit impulse as a approaches zero.

Since a is inversely proportional to a, one must have a high value of a

to obtain short pulses. If the frequency is increased, the value of a has

to be increased also, if the pulse is to decay to a fixed fraction of its ampli-

tude after a fixed number of r-f cycles. Actually for this purpose the

2ratio a/W , where w = 27x frequency, has to be maintained constant.

The transition from a frequency spectrum consisting of a series of
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discrete frequencies to one consisting of a continuous band of frequencies

can be made by treating the nonperiodic function as a periodic function in

which the period approaches a . The unit Gaussian envelope eat2 cost

will be considered. The amplitude of the spectrum at w , is

0 e-at2 + jwt e-Wot dt

-a

For a single pulse, where f(t) = 0 for all values of t except -L < t < L,

we have

e(•o) =Z- 2Re We dt

-L

[efNW --Wa

1 e 4a Re e (r L - "W + -erf/a( +j (' wo)

where use has been made of-the identity,

erf(-x) = -erf(x)

With the expansion for the complex error function and then taking the real

part, one obtains

.( .-W0.) 2

g(w) = 1 4a (Z.erf Nla L)
0 Zir "Jra

0) 2

(erf]aL) e 4a
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The -spectrum of a train of Gaussian pulses of length 2(L + AL) recurring

every T seconds will be found from the spectrum of a single pulse of the

train. For the single pulse at any frequency wo/W,

0

g(W 0 e rferf NJ(L +-AL) e 4a
0( ora=

For a period of such pulses recurring with a spacing T = I/C, the sum

of spectra of the individual pulses form a Fourier series of harmonics of

C ; therefore

f(t) = 6 + TA cos 2irnCT

n= 1

where A is the sum of an infinite number (one from each pulse) of infini-n

tesimal terms g(ZnnC) and g(-2TrnC), giving

(U'- 2ZinC)
2

A erf(L+AL) e 4aAn

To put an absolute value on the amplitudes g( 0 ), it is necessary to aver-

age them over the recurrence period of the single pulse, making them in-'0

finitesimals. However, in the train of pulses recurring every T = I/C

seconds, the amplitude of A can:, be determined by averaging the terms
n

in g(wo) over an interval T;. then

(W - ZwnC) 
2

A e erf f4T(L +AL) e 4a
n
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-1
and when T =4L -

C erf •L ( W+• - 2nn)

A = en 1T",r- (4 LC .,1 )

thus,

f(t) = A +A 1 cos2iTCt + A 2 cos27r2Ct + . .

where A is known.
n
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APPENDIX B. FOURIER. COEFFICIENTS

The Fourier coefficients a and b , as obtained in Equation (2. 9)
1 r r

are simplified here:

acos y 1" sy + + y + dy

It is sufficient to obtain the solutions to the following coefficients, as they

.are related to the ones in Equation (2. 9):

a =f cos r y + c sin (my + a,) + c2 sin (ny + z)] dy
r -Tr

1T

b' = sin r y + c sin(my + a) + c2 sin(ny + 2 )a dy

-1T

7sin(my+a)+c sin(ny+a 2 )]
ar+jbr = 1

a blý Tr e.j r [y + cI sin (my + alI + c 2 sin (ny + c2)] dy

r r f

-it

Now, according to the property of Bessel Functions,

ej z sin = J (z) + 2 -(z) cos Z + .J4(z) cos 40-.

S+ 2 j I[Jl (z) sin 0 + J 3(z) sin 30 +...

*Jp(z) eipe (B. 1)

p=-
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since J -p(z) (1)p Jp(z) ; therefore, using the property in Equation (B. 1)

gives

am+jb' = eJrY ejp(my + a*(rc) e q(ny + 1 ) dy

a, j r e Zi rc,)e ,d
-7r p=-aq=-a7

-ejry -r q= eJ(Pm + qn) y + j(pal + qQz) dy

ý p=-cL q=-a

Because of the nature of the integrand, the order of integration and

summation can be interchanged; therefore

a +jb I Ij(pc
11+qc±2 ) sin(pm+qn+r)

ar + j r 2j Jp(rcl) Jq(rc 2 ) e pm + qn+r

p=-a q=-a

Now, noting that

a (-1)m (- ze j Tr, 2m -L _i "v+2mn• _:

Jv(-z) = Jv mv e(v+m+1) +m+1)

m=o

since e m 1 , therefore

iv(-z) = e Jvfl (z)

Using the same procedure as before, we obtain

' j* (+Clp +jq(cr +i san(pm+qn r)

ar - jbr =2j J p (rC 1 j q(rc2) + 2 ) sin(pm+qn-r)er
Yr (pm+qn -,r,)
p=-cL q=-a
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2j C '( +q j(pal +qa 2 ) sin(pm + qn - r)w

L T~ p q pm+ qn - r
p=-a q=-a

from which

ar' ZJp(rcl) Jq(rc 2 ) eJl~a + qci)

-- q= -a

(pm+qn-r) sin(pm qn+r)Tr + (-i)p~q (pm+qn+r) sin(pm+q-r))r

2 _2(pm + qn) -r

b 2 c Ic Jpl rci( Jq(rC2 .) jpal + qa 2 )
br E Z ip q

p--a q=-a

(pm+qn-r) sin(pm +qn+r)T - )p+q (pm+qn+r) sin(pm+qn-r) Tr

(pm + qn) - r 2

As r, p, and q are integers, a', and b' will not be zero when m and
r r

n do not have integral values. It must be noted that for large values of

p and q, the quantity 1/ [(pm + qn) 2 
- r2] becomes small, and therefore

the double infinite series can be replaced by a finite series to permit com-

putation.

-
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APPENDIX C. EVALUATION OF erf(a -jb)

In the analysis of klystron response to Gaussian wave excitation,

complex error functions of the type erf(a -jb), where a and b are real

numbers, have often been encountered. Here, a method will be indicated

to express the complex error function in terms of real integrals. Consider

the expression,

a-jb 2

erf(a - jb) e- f dz

0

in the complex plane with z = x + jy.
2 f

As e-z2 is an analytic function, f(z) dz = 0 around a closed

path of integration. Hence, integrating along the path shown by the arrows

in Figure 13 gives

a x b a-jb z

f e _2dx - j f !e(a-jy) 2 dy f eb e dz

0 0 0

'.y_____<_ (a o) ~

ý-Y

Figure 13. Path of Integration for the Function e-z
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from which

a b

2z f -X 2 -a 2 2)+jaerf(a-jb) = dx e Yx dx -y

0 0

-,(a' -a' ay cs2yd
erf(a) + 2 e"a -y sin2ay dy-j- co2 ayde

0 0

This representation of a complex error function in terms of real integrals

has been used frequently.

Some other important results follow:

b b

erf(-a-jb) = erf(-a) -2 F -(a 2 Y) dy L -(a 2y 2cos2aydy

o o

as

erf(a) = -erf(-a)

a-jb

erf(a-jb) - erf(-a- jb) 2 e ez dz

aF J-a-j

b

2 ( e -ra sin 2ay dy

0

which is a real quantity. This same result can be obtained by contour

integration around a suitable rectangle in the z-plane. Again
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b

erf(a - jb) - erf(c - jb) = erf(a) - erf(c) + sin Zay

0

b

-(c 2 y2) sinzcy] dy + j [e"(C 2y Cos 2cy

0

- (a 2 -y 2 ) cos2ay] dy

These results show that a complex error function can be easily

computed, and its real and imaginary parts separated. Considerable sim-

plification in computation can result in specific problems. The asymptotic

expansion, for example,

2-a1: 1
erf(a) = 1 e - + 3 +,3"a,4 Nr (2a ) (2a 2 : (2a2 3

is convenient for computation when a is large.
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There are two elements that together determine the response of a

microwave tube to short pulses. One of these is the electron beam (with

the nonlinear characteristic being the most important factor)., and the sec-

ond is the interaction circuit. For a klystron, the interaction circuit is

usually a resonant cavity; therefore the response of a resonant cavity to

short pulses is of interest in estimating the short-pulse capability of klys-

trons. This section summarizes the results of a study of the response of

a resonant cavity to a pulse with a Gaussian envelope.

It is assumed that the klystron cavity can be approximated by the

equivalent circuit shown in Figure 1, that is, by a parallel resonant circuit.

This circuit is driven by a current generator, i(t), which produces a r-f

signal at frequency wo0 with a Gaussian envelope:

i(t) = R[I evt 2 ejo°t]

The voltage across this circuit, v(t), is the signal whose characteristics

are sought. The departure of the envelope of v(t) from a Gaussian shape

is a measure of the distortion introduced by the finite bandwidth associated

with the resonant cavity. The voltage, v(t),, can be determined in a

straightforward manner using Fourier transform techniques.

The admittance of the parallel resonant circuit; Y(w) is given by

Y(co) = G +jw - (C)

Define,

Yoj

S-L-

i _____________________ ______________________ _____



i~)-- c IL IG

B((t)

Figure 1. (a) Equivalent Circuit for Resonant Cavity Driven by a Current
Pulse. (b) Current Pulse with Gaussian Envelope.



2 1
(r - ' "

r

. r - ;(3)

then

D-) + W r(4)

For simplicity, the resonant frequency of the cavity, wrr is taken equal

to the carrier frequency of the, input signal, w . This will almost always

be at least approximately -true in practice.

Using the Fourier transform of the input current pulse, the Fourier

transform of the output voltage pulse is

(( - CA )

V 

W0 )
= •, (5)o , oW

where

0o, -7- -- Io
0

The output voltage as a function of time is

v(t) R 0 Wo Vo 1

L + erf t 0 4+**" IJ4Q v QT



W t 2a!1f"TO

0 0

I+ +- - 1) -o 0

e

(7)

Figures 2 and 3 present the output voltage envelope as a function ot

time for two different pulse lengths and with 0 as a parameter. In Figure 2,

the length of the input current pulse is 100 r-f cycles between the -10 db points.

For a 0 of 10, the output voltage pulse envelope is nea~rly identical with the

current pulse envelope. For a Q of 100, the voltage pulse is delayed in time

by approximoately 25 cycles, but its shape is still approximately Gaussian.

Thus the amount of distortion of the envelope introduced is not large for

0. < 100 in this case.

Figure 3 presents the results for a pulse length of 10 r-f cycles be-

tween the -10 db points. In this case, the increase in the pulse delay as the

Q is increased is clearly evident. Further, although the Q = 10 curve ap-

pears to be nearly Gaussian, at 0 = 50 or 100, the curves are far from Gaus-

Sian, having long tails. At 0 = 20, the asymmetry of the curve is..becoming

evident; therefore Q = 20 may be taken as a rough dividing line between ac-

ceptable and excessive distortion.
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Figure 2. Response of Single Tuned Circuit to a Gaussian Current Pulse.
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0.3- / 0.6

0.-0.4
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Figure 3. R esponsie of Single Tuned Circuit to a Gaussian Current Pulse.
(10 cycles between -10-db points.)
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One measure of the distortion of the output voltage pulse is the ex-

tent to which the magnitude of its Fourier frequency spectrum departs from

that of a Gaussian, envelope pulse. The Fourier spectrum of the output volt-

age can be written from Equation (5) as

(•- (o) )

W_- V(W)l e 4v
V/: (8)QV 2+ QZ : ) (8)

The ideal response is

0
IV(w)l ideal 4v (9)
1T QV

0

A measure of the distortion as a function of frequency can be defined as

D (,,w-Q ~VI -I~wi
0) rr Q V('O~l deal VW

1•- (w o~2

D = e 4v- 1 (10)

Figures 4 and 5,show D(/w 0 ) versus /ýo0 for 100 and 10 r-f

cycles between -10 db points, respectively, with Q as a parameter. From

Figure 4 for the 100-cycle case, D(w/w ) is negligible for Q = 10, and not

too large for Q = 100. However, for the 10-cycle case of Figure 5, D(W/W

has peaks of appreciable height at Q = 20, and these are very large for

Q = 100. These curves, of course, corroborate, the concluaions based on-

__N_
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Figure 5. D(x) versus x. (N= 10 r-f cycles to -10-db points.)
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the time response curves of Figures 2 and 3 since they are an alternative

method of discussing the resonant circuit characteristics.

Two additional observations can be made concerning the D(w/o,0

curves. The curves are slightly asymmetric about o/Wo = 1.0, the peaks

being higher for w < woo than for c > w 0. This asymmetry decreases as Q
increases, and is negligible for Q values where the distortion is large.

Second, the location of the peaks of D(w/w 0) tend toward w/oo = 1.0 as Q

is increased. A positive value of D(w/w o') corresponds, in a sense, to a

deficiency in the Fourier spectrum of the output voltage pulse. As the Q

is increased, the maximum 'deficiency" occurs at a frequency closer to

the resonant (and r-f carrier) frequency.
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t time

v a-c velocity
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Z normalized axial co-ordinate
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a depth, of modulation for n cavity
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r phase angle of the voltage across the n cavityn

transit angle correction factor
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% wavelength of the X-ray radiation
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ABSTRACT

This report describes a ballistic analysis made of an electron beam

in a two-cavity klystron, which was assumed to have infinite cross section,

negligible space charge, nonrelativistic velocities, and gridded finite gaps.

The operating parameters of a catcher gap for maximum efficiency and the

velocity-filtering capabilities of a r-f gap interacting with a spent beam,

at large signals were investigated. The term "velocity-filtering" means

a reduction in the velocity of bunched electrons of a certain velocity-class.

All the characteristics in this study were computed by a Burroughs Datatron

220 digital computer, when necessary.

The behavior of an electron beam in a buncher gap was investigated

using a graphic analysis based. on the results given by the digital computer.

The velocity and current distributions emerging from this gap were formu-

lated. The graphic results were approached by successively approximating

the transit-time correction factor.

The results obtained by successive approximation were then used

as initial conditions in analyzing the behavior of the electron beam in the

first drift space. A Fourier series was derived which describes the var-

ious harmonics of the beam current as functions of the operating parameters

of the buncher gap and the drift space, for large signals. The results are

found to be in agreement with those in the literature.

The exit current and the exit velocity from the second gap were

formulated as implicit functions of entrance and exit times in forms appli-

cable to a dcigital computer, and the operating conditions of the second gap

were taken as parameters. The computer data were sorted for both a
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catcher gap and a velocity-filter gap by kinetic energy calculations. The

catcher gap selected had an efficiency of Z3.995 per cent.

The same procedure was applied to a second drift space. and then to

a third gap, so that the solutions corresponded to a combination consisting

of a two-cavity klystron and a velocity-filter cavity. With the known opera-

ting parameters of the catcher gap and the velocity-filter gap, the value of

the second drift angle for best filtering was determined. The velocity-filter

gap selected had an efficiency of 5.368 per cent. The addition of the velocity-

filter gap was shown to decrease the intensities of X-ray radiation through

a given shield.
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J1. INTRODUCTION

The ballistic approach for analyzing an electron beam in a velocity-
1

modulated tube was first introduced by Webster. Although his theory lacks

validity at or after crossover because of spacie-charge forces and does not

apply to electron beams of finite radius because of fringing of the -space,-

charge fields, it has two advantages: (1). It is simple and provides an in-

sight into -the physical phenomena and thus serves as a guide for more

complicated theories,, and (2) it is fairly accurate at large-signal levels

fox low-perveance beams.

The current tendency to demand higher power levels from klystrons

increases the importance of ballistic theory. In an experiment, Mihran2

showed that for -large signals, the electron beam showed ballistic behavior;

i.e., the debunching effect of the space-charge forces became less impor-

tant. At the same time, in finite beams, the space-charge forces acted to

enhance bunching at large signals by debunching inner and outer electrons

differently.

In a high-power klystron, the velocity spread of the electrons in

the beam increases considerably at large signals, Hard X-rays emanate

from the collector of such a tube since the fast electrons r'each velocities

that are capable of producing these X-rays. This is a serious disadvan-

tage of high-power klystrons, but it can, however, be overcome: by de-

vising some means of obtaining electronic interaction with the spent

beam, the benam after the catcher gap. The well-known method of the d-c

retarding field alone, i. e., application of a negative voltage to the colledtor,

would not suffice, since the d-c retarding field may turn back some of the



slow electrons while decelerating the fast electrons. A r-f circuit, such

as a r-f gap or a. helix, on the other hand, can be designed to interact

with the beam in such a way that only the fast electrons are decelerated.

Such a r-f gap is analyzed in this study, and it is called the velocity-

filter gap. A proper combination of the d-c and the r-f methods, then,

may prevent radiation of X-rays.

The purpose of this study is to analyze the electron beam in a two-

[ cavity klystron, using a ballistic approach, to determine the characteristics

] of the spent beam and to investigate the velocity-filtering capabilities of a

r-f gap. To simplify this analysis a model is chosen with the following

assumptions: (1) beam of infinite cross section, (2) negligible space charge,

(3) gridded finite gaps, and (4) nonrelativistic velocities. All the charac-

teristics in this study are computed by a Burroughs Datatron 220 digital

computer when necessary.

The analysis of the first gap is given in Chapter II. First a graphic

analysis'i-s made by setting up exact equations for the gap and solving them

with the computer; then analytical formulas are derived for the exit Velocity

and the exit current. These derivations are based on successive approxi-

mations to the transit time and are compared with the graphic analysis to

determine the range of validity.

The results of Chapter II are used as initial conditions in Chapter III

for the analysis of the drift space. Fourier analysis of the current at the end

of the drift space results in a series which describes the various harmonics

of the current as functions of the operating parameters of the first gap and

the drift space for large signals. At this point, however, multivalued func-

tions resulting from the occurrence of overtaking come into play, and explicit
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analytical formulas no longer approximate exact formulas. in the rest of

the analysis, therefore,. one is restricted to dealing with exact implicit

formulas.

In Chapter IV, the second gap is treated in the same way.as thei

first gap. A r-f voltage is assumed across the second gap with variable

amplitude aand phase. The characteristics of the spent beam are deter-

mined by the computer and the results are sorted out for both a catcher gap

I and a velocity-filter gap; by kinetic energy calculations.

Chapter V describes the effects of the second drift space and the

velocity-filter gap on the characteristics of the spent beam. The analysis

is similar to work in the previous chapters, the operating parameters for

the catcher gap and the velocity-filter gap found in Chapter -IV being used

as initial conditions.

-3-



II. ANALYSIS OF THE FIRST GAP

The first or buncher gap modulates the velocity of an electron beam.

This, in turn, causes density modulation in the drift space. In a finite gap,

however, density modulation also takes place. This factor has been neg-

lected in previous analyses, and including it here extends Webster's analysis.

Exact equations for the first gap will be derived from the equation

of motion, and the characteristics of the beam will be calculated by the

computer. Analytical expressions of functional relationships will be based

on the exact graphic method with the assumptions mentioned. Thus in this

chapter, a graphic analysis is first made, and then analytical formulas are

obtained by successive approximations.

A. GRAPHIC ANALYSIS (Computer Problem)3

The equation of motion of electrons in the buncher gap, with a

sinusoidal input voltage and no space charge, is a simple second-order

differential equation,

eV
md1sinwt (2. 1)
md

Using the notation of Figure 1, integrating Equation (2.. 1) twice,

and substituting boundary conditions at t = ta and at t = tb, one obtains

eV1
z= v + - (cos Wta - coswt) , (2.2)

mwd

cosWta) (tb -t) + d (sinta -sintb (2. 3)
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Defining the d-c transit angle and depth of modulation gives

= -- (2.4)
S 0-

V1
- (2.5)

V

and normalizing with respect to d-c velocity gives

Z - = 1 + - (cos Wt - coswt) (2.6)V 20 a b

E) =I + 20 Cos t (Wtb- Wta)+ c- (sinwta -sinwtb) (2.7)g 2 20g9

Equations (2. 6) and (2. 7) completely define the motion of electrons during

the passage through the gap and give the implicit relation between entrance

time and exit time with the gap transit angle and, depth of modulation as

parameters.

FIRST ,GAP SECOND GAP
PLANE 0 b c dI I I

I..

o0  i IVb vc II

I b

1<-v, sin wt->.,
TIME' to tb tc

Figure 1. Schematic Diagram of Two-Cavity Klystron with Parallel
Gridded Gaps.
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The numerical computations of Equation (2. 6) and (2. 7) have been

carried out on the digi.tal computer and are presented in a series of graphs

of noiralized exit velocity, VbV, versus exit time, wt ; normalized

exit current, ib/lo, versus exit time, wtb; and the transit-time correction

factor, wttb a -.e , versus entrance time, wta-

Exit current is obtained by applying the principle of conserva'tion

of charge through the gap; it can be determined from

b dta 8)

1 dwt,0 b

Numerical values of the normalized current are found by measuring the

slope of the curves of the transit-time correction factor versus entrance

time at each point. Figures: 2a, b, c show the results of this method for

three different gap transit angles with depth of modulation as a parameter.,

Other results obtained by this method are presented in subsequent sections

of this chapter.

It can be seen from Figures Za, b, and c that the normalized exit

current gradually becomes peaked as the d-c gap transit angle (0 ) is

increased, and that there is a phase difference, between the normalized

exit current and the normalized exit velocity. Since deceleration and

acceleration of electrons during the corresponding half cycles of the input

voltage counteract each other, there is a limit to this peaking of the exit

current as the d-c gap transit angle is further increased; e = ir is ag

practical gap transit angle, and it is used in the computations throughout

the rest of this chapter and in the next chapter.

The wave forms of the exit velocity and the exit current show that
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they both 'have harmonics and that transit-time effects are nonlinear in the

buncher gap.

B. FIRST -ORDER ANALYSIS

When the results of graphic analysis are known, one can proceed

with the analytical study by making approximations in the derivations, and

comparing the results, thus obtained with those of the ,exact graphic method,

The discrepancies will show the validity and the range of the analytical

forms.

1. Velocity Modulation

One must approximate the transit time, since it plays an important

role in the physical phenomena within the buncher gap. Assuming a cor-

rection term,

Wt b = at a + 0 (2 .9)

where

8 8 (l + 8) 8 5 = Wtb - t -Wt , (2. 10)

and substituting Equation (2. 9) into Equation (2. 2), one obtains for t tb'

Ve 1 ( 8+
vb= v - -- sin- sin t -

m d 2w

.0
sin T

V + v a 2 sin t- (Ž 11)
0 2 8 (t b

2

Expanding sin(•tb -(w ) by trigonometric identities and neglecting 6 terms

of higher order than the linear term, one can write Equation (2. 11) as

-8-



ILb

_- = I+. a sin tb i -) + 8 - cos sin tb- -) aO cos tb-Y o 0 2 2g( 4 9 (

- (2.. 12)

where

Ssin-i-/ g (2. 13)
2/ 2

Integrating Equation (2. 2) and substituting in it the boundary con'-

ditions at t = ta and at t t b, and Equation (2. 9), one obtains

v 0 a0v av
d = - +- cost-) + sin(tb ) sin•t- b' 2 0 g Z~g

(2. .1.4)

Assuming

cos [wtb-og (1 + 6)] 5 Cos(Wtb-bg)

sin [W'b-@g (1 + 6)] sin (wtb g)

s~in [Atb-eg6] sinwtb

and neglecting the a6 term gives

2= a2 [A sin wtb + B coswt b] (2. 15)

g

where

A 1 - o 0 - 0 sin O (2. 16a)g g g

B sin e - 0 cos 0 (2. 16b)g g g

Substitution of Equation (2. 15) into Equation (2. 12) leads to
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b I + + -a sin t + MsinZ (wtb + •.) (2. 17)vO 2 b(t P
0

Where

A - (cose -1) , (2. 18aa)

2

Sz g

M P2 +Q , (2. 18b)

P = *IsinZg - sine - 0 + ze sin2 eG) (2. 18c)

Q 2s8 -2co2 e O sinZe
i +.... C e (2. 18 d)

2 • - tan- - (2. 18 e)

Equation (2. 15) is plotted in Figure 3 for 0 = i. It can be seen that
g

while Equation (2. 15) is a good apprbximation for small signals, it is a

less satisfactory approximation for large signals.

2. Density Modulation

Substituting Equation (2. 15) into -Equation (2. 10) and rewriting it,

one obtains

wQt = w~tb e sin wtb + B cos wtb
Cat =tb - eg ( [Asi .b Boab] (2.19)

g

As in the graphic method, one can, by using Equation (2. 8), express the

normalized exit current as

ib B

1 + a (B sin wt - Acos wt.) (2.20)

0 b
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I

8 - eg( 1 +8 5 +6 2) (2.23)

where 6 is given by Equation (2. 15). Substituting Equation (2. 23) into

Equation (2. 14), assuming

cos ( tb -0) ' coS ( tb -a - og l 6 ) + 8g62 sin (wt - 8b - 8 1)

s i n (w t b - -) ) s i n ( w t tb - - 0 9 g 51 ) - 0 6 2 c os-( t b 0 g % 51 )

and neglecting a56 and 82 terms, one obtains2 2

62= -61 + 2-• Isinwt b-sin(wt b-8 - 6 g(1+51) COS(Wt-8 -g8)]
2 2 2 Lb g eg 51) - Og l 6 ) c wb eg -gl j )

* g
(2.. 24a)

and

Wtb ' ta -Og - 2 = [sinwtb-sin(wtb -g og _ 91) g (g(1 +51) cos (wtb- 0g- 0 61).
g

(2. 24b)

Equation (2. 24b) is plotted in Figure 3 for 09 r r. It can be seen fromg

this figure that Equation (2. 24b) gives a fair approximation to the graphic

results for larger signal values.

1. Velocity Modulation

Substitution of Equation (2. 24a) into Equation (2. 13) leads, after

some rearrangement, to

vb 1 a (-a 2 2 B2 2
"( o - 1 + -O g 1) - [A + B - A B sin20 B - A co s2 gi

-

I
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2

+ L siO 6 ( cos20 -B sin 2g0 sint

- - Cos a + -4g .(2B -A sin20g - B cos 20 ) CosBt b

+ a(- B OSg -A silg + a [(A 2 + B2 ) sin2g - 2ABI sin2cwtb

--- fA-g cos g +B sine - B- 2+ Cos + B

gg [A 2  2 g cos Z6tb

0 3

(A cos2O + B sin 20) sin3wtb
4729g) g g b

a -- $- (A sin20 -B cos 2) cos 3wtb+ [(B2-A ) sin2e4 2 0  g g tb+8 (0

4

+ 2AB cos 20 sin I 4 wt b + . l(g) [(B 2 A2 ) g cose-AB sinf20g 1 cos 4wtb

(2.25)

Equation (2. 25) is plotted in Figure 4 for 0 = ir fo-r comparison with theg
graphic method, and in Figures 5 and- 6 with the d-c gap transit angle as

a parameter. It can be seen from Figure 4 that Equation (2. 25) approximates

the graphic method fairly well up to large signals. Figures 5 and 6 show

the ,effect of the d-c gap transit angle on the velocity modulation. As ex-

pected, it can be seen that the modulation effect decreases, because of

partial cancellation, as the d-c gap transit angle is increased.
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Figure 4. Normalized Exit Velocity vb/v° versus Exit Time wttbs Com-

paring Graphic and Second-Order Methods.

2. Density Modulation

Differentiating Equation (2. 24b) and neglecting third-order terms,

one obtains

i b dw~ta. ac d61T-o: wt- G [Cos - cos (t -0g) + og 9- )o
b b-

d61 sin ( tb 0g o- (61 g -' b

(2. 26)
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Substituting Equation (Z. 15.) and its derivative with respect to Wtb and

rearranging terms gives

b a 2 2 2 ( A 2 - B 2 )
r I+(Te )3+1 a [A +B +eg.9AB)sin 0( g -B Cos g]sin wt b

e A-I A 2 +B -e AB) cos e (A2 _ B!i e sin Cos t7 7 +2 9g g" sg g] b

g g 27e2

+ eg (A cos eg + B sin g) sin Z Wtb (- eg(A sin 0g- B cos eg)Cos 2Wtb

(B2 2 2 AB)

-s g +9- sin G sin - 4

3 A. ( 2 - B 2  (B2 -A 2-e09AB) 1

(y-i ABsine 0 ----- sine0 - 2z.L CosO I 1 co s 3 wtb

(2. 27)

Equation (2. 27) is plotted in Figure 7 for e = w for comparison
g

with the graphic method, and in Figures 8 and 9 with the d-c gap transit

angle as a parameter. Again it can be seen from Figure 7 that Equation

(2. 27) approximates the graphic method fairly well up to large signals.

Figures 8 and 9 show the effect of the d-c gap transit angle on density

modulation. As in the graphic method, it can be seen that density modu-

lation first increases with the d-c gap transit angle and then decreases.

It should be observed that the second-order analysis introduces

harmonics up to the third harmonic in the current expression, and up to
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the fourth harmonic in the velocity expression, and that it extends the

approximationto larger signals.
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III. ANALYSIS OF THE FIRST DRIFT SPACE

Thp electron beam enters the drift space both velocity-modulated

and density-modulated, and it drifts in a field-free space. This drift action

produces further bunching of electrons, thereby increasing the harmonic

contentf' f the' beam current. In his analysis, Webster neglects the density

modulation produced in the gap, since his analysis deals with small signals.

It was shown in the previous chapter that for large signals, the density modu-

lation in the first gap was considerable, therefore the present analysis will

consider the density modulation in the gap. It will include only first-order

terms, however, and will not consider space-charge debunching. Although

the present analysis is not valid after crossover, it will be extended beyond

crossover; for qualitatively, it anticipates important trends.

The time at plane c (see Figure 1) can be expressed as

Wt = tb + b (3.1)
c b v b

Shifting the reference of time gives

8

wt' = W*t - (3.2b b - (3.2)

Dropping the prime, and neglecting the second-harmonic term in Equation

(2. 17), one obtains from Equation (3. 1),

tc - -=tb - X sinwtb , (3. 3)
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whe re
H0

S0 (1 +. (3.4a)

0 W1 (3.4b)
o VV

0

X T ýa (3.4c)

Equation (3. 3) shows the functional relationship between the entrance and

exit times of the drift space.

A. DENSITY

The principle of conservation of charge for the drift space states

that

.ib dwtb i cdwtc (3.5)

One can express the current at plane c as a Fourier seri, es given by

= A + Acosn(wt- + B sinn(wtc -(3.6)ic 0o C n

n1

where

A =- , .('.3.. 7,a)
0 0

21r

An = f ic cos~n (tc - *)dwt (3.7b)

0

2 -r

B 1 i. sinn(-tc ,) dwt (3.7c)
n c c c

0

-24-



I

If one uses Equations (2. 20), (3.2), (3. 3).and (3. 5), then Equations (3.'7b

and'c) become

0

B = 1 + N + si n +o tb - X s.inwtb]dwt (3.8b)

.n = [i +N ( +b +4)]sinn[-•tb bX sinwtb]d~tb

0

Using Bessel function expre ssions4 for trigonometric functions, integrating,

and using recursion formulas for Bessel functions, one obtains

OO

" + 2 1 + sin + Jn(nX) cosn (wtc -)

n1

/n ~(nX)
+ 2N cos + -n. sinn(lt. 4b) (3.9)

It can be seen from Equation (3. 9) that the beam current at plane c

is rich in harmonics and that each harmonic can be calculated for any

specified condition from the equation. Equation (3. 9) reduces to that of

Webster for small signals. It should also be noted that an additional

phase angle, 3n , is introduced by the two independent components of

each harmonic, given by

[1 + -sin +i i)n(nX)
tann = ( ) n (3. 10)

N cos . ! kJ"-5- (nX)
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Figures 10a, 1la, and 1Za show the first three harmonics, and

Figures 10b, 1 lb, and 12b show the phase angles of these harmonics as

a function of the bunching parameter (X), with the depth of modulation as

a parameter, f6r.. 8 = ir. The maximum amplitudes of the fundamentalg

current for different depths of modulation (see Figure 10a) are seen to be

greater than the usual value of 1.16, which was also predicted in a bal-

listic analysis b~y Webber that, included space-charge effects.

The first three harmonics are also plotted in Figure 13 as functions

of the drift angle 0 for 8 = r. Qualitatively Figure 13a resembles

the experimental curves of Mihran, who also observed a saturation of the

maxima of the fundamental current, although he did not explain the resaon

for thi s.

Although space-charge effects were neglected in this study, the

results obtained parallel those of others within the range of validity. A

6
comparisbn. wifth. Solymar's results is shown in Figure 14, where it was

assumed that

0
pZ = o! (3. 11)P k

B. VELOCITY

The transit time through the drift space can be assumed to be
00

Wtb - (Wtc- = bl sinl(wtc -4) (3. 1Z)

1=1

where

I= 1 tb-.(•t -] sinb 1(tc - ) d(wtc -4) (3. 13)

-1-Z
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Integrating Equation (3. 13) by parts and substituting Equation (3. 3), one

obtains

Wt = W~t + - ( 1X) sin 1 (wt - *) (3.14)
b C J 1 (1X

Equation (3. 14) shows the functional relationship between the entrance

time and the exit time of the drift space. Figure 15 shows a comparison

of Equation (3. 3) and (3. 14), where only the first three harmonics are

included in Equation (3. 14).

Since the drift space is assumed to be field-free, the equation of

motion becomes

i = 0 (3.15)

Integrating Equation (3. 15) and applying the boundary conditions at

t = tb , substituting Equation (Z. 17) with second harmonic terms neglected

and Equations (3. 2) and (3. 14), one obtains

C IVc 1 + + nI - )+ -- +--pa sin(Wt in tc ( (3.16)

0

Equation (3. 16) is plotted in Figure 16 with depth of modulation as a

parameter for 0 = 1T and E0 = Tr/Z
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IV. ANALYSIS OF THE SECOND GAP

It is well known that an electron beam has nonlinear characteristics

and is rich in harmonics at the end of a klystron drift space. Analysis of

the beam through a second gap, therefore, becomes complicated, because

of overtaking and the multivalued nature of transit times. Analytical for-

mulas, which can be derived from such an analysis by making approxi-

mations similar to those made in Chapter II, become implicit expressions

of entrance and exit times as well as of various operating parameters.

For these reasons, only computer solutions are obtained in the

remaining parts of this study. Thus the main effort will be directed to

computing velocities and currents of a spent beam as functions of time rather

than formulating them analytically. This will permit realization of the

purpose of this study: (1) to investigate the characteristics of a spent beam

in a two-cavity klysti6n and (2) to investigate the velocity-filtering capabili-

ties of a r-f gap, using these characteristics as initial conditions. Addi-

tional information will be obtained about power output and tuning conditions

of the catcher gap of a two-cavity klystron for optimum operation, since

both velocities and currents will be known at the entrance to and at the -exit

of the second: gap. Numerical calculations of kinetic energy will suffice

for this purpose.

A. COMPUTER. PROBLEM

Fundamental current at the entrance to the second gap can be ex-

pressed, by combining its two components, (see Equations 3. 9 and 3. 10), as
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ic= k' sin(ct- +P1 ) , (4. 1)

where k is the amplitude of the fundamental. Assuming a voltage V 2

across the second gap with a phase angle r"2 with respect to fundamental

current.. one can write the equation of motion for this gap as

•."-• e V2
z - sin(wt+ ) t (4.2)

where

= -6+ P + r2 (4.3)

Integrating Equation (4. 2) twide, substituting initial conditions at t = tc,

and normalizing with respect to d-c velocity, one obtains

, Lw + +OS (Wt ) -Cos (Wtc + ) (4.4)

vo ze

,= -- cos (,,t + (t - tc) [sin (wt 'sin (c +

(4. 5)

where a 2 is the ratio of the assumed voltage V 2 to the d-c beam voltage

V 0 . and where the d-c gap transit angle, 9g is defined by

wdz
0 = (4.6)
g 2  v 0

"Applying boundary conditions at t = td to Equations (4.4) and (4.5)

and multiplying Equation (4.5) by w gives the following equations:
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[F L cw o (wt. + 11 sin (wt + ~) -sin (wt +oc( t w d +I-
2e o2 + d

(4., 7)

Vd Vc •]
d +c + "2,) - Co o (Wtc+ ( (4.8)

v Lov (wtTo(w[c d)Co o, gz

Equation (4. 7) is used to compute the -exit time- wtd, and Equation. (4. 8)

to compute the normalized exit velocity vd/v for a given entrance time

wtc and for different gap parameters of a. , 0g , and rI2 1

The normalized exit current is found by using the principle of con-

servation of'charge,and is expressed as,

i
C

d (4.9)
I d wtd I

dwt
C

The denominator of Equation (4. 9) is derived by differentiating Equation (4. 7)

with respect to wtc , and it is given by

v a2 d v
-- c0--- td-wtc) sin.(tg + -(td dw . v)T

d .wt= v 
.( (4.10)d olt c v CL

0v 22 [cos (wtd + )-cos(wtc+)]vo 0

g 2

It shoulE.,be noted that the normalized entrance velocity vc/V° given by

Equation (3. 16) is a single-valued function of wtc and cannot be used for
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large signals. On the other hand, the normalized entrance current i c/I1

given in series form by Equation (3. 9), is not suitable for a computer.

In the first drift space one has

ibdawtb = icd wtc (3.5)

z = 0 , (3. 15)

ib
= I +-N sinlwtb +•) (2.211)

0

b = l+A•+La sin tb- +M sinZ(catb+) j

(2. 17)

Defining

0
xk Wt b 2 1 (4. 11)

and neglecting the second-harmonic term in Equation (2. 17), one can de-

irive the following formulas, which take the multivaluedness into account,

and which can be used iz-. a computer:

c Xk + + ol, (4. 12)

S1 + A + 4 a sinxk

1 •ttcsx
d_ t c 2- 0ol
dXk (k+A+ 1 sinxk) (4 13)

i S. 7' 1 +.N sin(xk +tj + 0g/2). 4.14)

10 k IAtkI
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V

iA +7 .La snk (4.15)0

d( Vc •- •a Cos xk

)V Atk

Equation (4. 14) gives the sum of the series in Equation (3. 9) and is easily

applicable to computer programming. Equation (4. 15) is likewise multi-

valued and can therefore also be used for-large signals.

It should be noted that Equation (4. 9) does not contain the summation

sign; therefore it gives the component of the normalized: exit current id/Io

which corresponds to an increment of a specific entrance time wt . Thec

intention here is to follow the separate current contributions from the in-

crements of different entrance time wt in future computations. This point
c

will be discussed again in later sections.

B. CALCULATION OF KINETIC ENERGY AND DISCUSSION

Equations (4. 7) -. (4.9) with the auxiliary Equations, (4. 10) and

(4. 12) - (4. 16) were computed by the digital computer. In order to allow

experimental verification of the results obtained from the computer, the

physical magnitudes of the 'input parameters were selected to be applicable
7

to the dynamic beam analyzer, which is an experimental tool available in

this laboratory. Therefore a value of 1.75 radians for -the d-c transit

angle of ;the first gap e and a value of Zi1 radians for the normalizedg

drift distance 0were chosen. This value of 8 places the second gap

at about one-eighth of a space-charge wavelength of the dynamic beam tester.
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The depths of modulation in the first gap a I and the second gapa 2 ý are

taken from 0.2 to 1.0 in 0.2 steps; the d-c gap transit angle of the second

gap E)g2 was taken from Tr/4 to 2w radians in Tr/4-radian steps; and

finally the phase angle r 2 of the assumed voltage V2 across the second

gap with respect to the fundamental current at the entranc.e was taken from

-Tr to ir radians in Tr/4 -radian steps. For all casels mentioned above,

the entrance time wtc was changed from 0 to 2 7r radians with different

increments chosen from the curves of the normalized entrance current

i c/i versus entrance time w tc as needed. Thus, it can be seen that the

computer calculations cover a wide range of operating conditions.

It should be pointed out here that the assumed voltage V 2 across

the second gap may either be induced by the electron beam or be applied

externally. Separation of these states is possible by kinetic energy cal-

culations at the entrance to the second gap and at the exit from it. Ob-

viously, a decrease in kinetic energy through the second gap indicates that

power is taken out and that the voltage V2 is induced by the electron beam,

An increase in kinetic energy, on the other hand, signifies that power is

fed into the second gap and hence that voltage V 2 is aepplied externally.

The argument for the existence of such a gap voltage depends upon the phys-

ical realizability of the circuit parameters associated with its phase angle

r 2 , i. e. , actual total admittance and resonant frequency of a specific

cavity used as the second gap. This point will be discussed further in the

next section.

The computer data are so arranged that, for a given set of operating

parameters, the normalized exit current id/io, the normalized exit velo-

city vd/vo and the exit time wtd are given, together with their corre-
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sponding counterparts at the entrance; i. e., the normalized entrance cur-

rent ic/I 0 , the normalized entrance velocity v c/v 0 , and the entrance

time wt

Normalized kinetic energy per cycle of the electron beam can be

computed from

W r
2T = Z d dwt, (4. 17)

where Wk is the kinetic energy per cycle, i/I is the normalized current,

and v/v is the normalized velocity at time wt.
0

1. Two-Cavity Klystron and Velocity-Filter Gap

Figure 17 shows the fundamental component of beam cur-rent at the

entrance to the second gap for different depths of modulation aI at the

first gap with a value of 1.75 radians for the d-c transit angle of the first

gap 0 as a function of the first drift angle 0 .. The drift angle of 2Trg 0

radians used in the computer run is shown by a vertical dashed line. It

is seen from the figure that the maximum value of the fundamental current

occurs between a =0.6 and a 1 = 0.8.

Figure 18 shows the normalized current ic/I° and the normalized

velocity vc/v° at the entrance to the second gap for different depths of

modulation a1 at the first gap. Velocity curves in Figure 18 indicate that

there are two stationary points on all curves. These points correspond to

those electrons that pass through the first gap at times when the r-,f field

at the first gap changes from decelerating to accelerating and vice versa.

With respect to the stationary points, therefore, electrons in the beam at
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the entrance to the second gap gan be divided into the following classes:

Class I - bunched fast electrons (near the first stationary point),

Class 2 - bunched slow electrons (near the first stationary point),

Class 3 - -electrons near the second stationary point.

It is obvious from Figure 18 that as the depth of modulation a 1 is increased,

two bunches of electrons occur, one of fast electrons (Class 1) and the other

of slow electrons (Class 2). Since the drift angle 0 is constant, Class 1

and Class 2 -electrons begin to debunch at about a 1 = 0.8. The optimum

bunching occur,-s between a 0.6 and a1= 0.8, which can also be easily

predicted from Figure 17. The deviation of velocity from the d-c value

increases as the depth of modulation a1 is increased.

The operating parameters of this analysis are the depths of modula-

tion at the first gap a 1 , and at the second gap a., the d-c transit angle

of the second gap 8g 2 , and the phase angle r 2 of the voltage VZ across

the second gap with respect to the fundamental component of the beam cur-

rent at the entrance to the second gap. In the following analysis, therefore,

one of these parameters will be varied while the other three parameters are

hel.d constant. Numerical calculations of Equation (4. 1 7) using the computer

data show the types of operation shown inTable I.

TABLE I.

Types of Operation Indicated by Computer Data

Type Kinetic energy Maximum value of exit velocity
w (normalized) vd/vO (normalized)

Type I decrease decrease

Type 2 decrease increase

Type 3 increase increase
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Cases of Type 3 are automatically excluded, since they are not in-

cluded in the present study, but they might be used to represent the middle

cavity in an analysis of a three-cavity klystron. The amount of the decrease4

in the normalized kinetic energy is, in general, greater in Type I than in

Type 2. Further computations for Type 1 show that the greatest decrease

in maximum velocity does not necessarily accompany the maximum output

power, and the operating parameters are different for each of these cases.

In-Figures 19- 28 and in Figure 31, each class of electrons will be

designated so that the reader can refer to Figure 18 to get a clear picture

of the behavior of the electron beam. Figure 19 shows, for a1=0.8, - 2 =.0,

and 0g 2 .=7r, the normalized exit current id/I° , and the normalized exit

velocity vd/v o, as functions of the exit time wtd when r is varied from

o to -Tr radians in T/r-radian steps. Since the gap width and the voltage

across the gap are constant, this series of graphs corresponds to the cases

where the magnitude of the r-f field is held constant and the phase of it

with respect to the beam is shifted. It is seen that under these operating

conditions Class 1 and Class 2 electrons undergo changes while Class 3

electrons (of which there are only a few) are affected very little. As r 2

is increased in the negative direction, the two bunches already existing

come closer and form. a single bunch. This bunching seems to be related

to the velocity in such a manner that the maximum velocity of Class 1 elec-

trons increases as the negativeness of r2 is increased and as power is

fed into the gap. The case for r2 = -ir/4 is the optimum operation for this

series for output power, but the efficiency is very small since the bunch

of Class 2 electrons is accelerated while the bunch of Class 1 electrons

are decelerated in passing through the gap. Overtaking occurs within the
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gap between r"2 = -I/2 and r 2  - 3Tr/2.

Figure 20 shows, for a - 0.8, a2 = 1.0, and r2 = -7r/2, the nor-

malized exit current, id/I: , and the normalized exit velocity, vd/v ,I as

functions of the exit time wttd, when 0g 2 is varied from 37r/4 to 7ir/4

radians in Tr/4- radian steps. As %g, is increased, Class 1 and Class 2

electrons first bunch together, overtaking occurs within the gap, and then

these two classes of electrons begin to debunch. It should be noticed that

the magnitude of the r-f field decreases continuously in this series of

graphs. The phase angle r12 is such that both the bunch of Class 1 elec-

trons and the bunch of Class 2 electrons are decelerated continuously from

one case to the other. At the beginning of the series; power is fed into the

gap for e = 3ir/4 and eg 2  Tr cases, biit it is taken out for the remain-
g2

ing cases. The case for e . 71r/4 represents the velocity-filter gap,

in which there is a 10.3 per cent decrease in the maximum velocity, and the

efficiency is 13.5 per cent.

Figure 21 shows, for a = 0.8, eg 2 = ir/2, and r 2 = -r/4, the

normalized exit current,. i' /I',,, and the normalized exit velocity, vy/v:,

as functions of the exit time, wtd, when a2 is varied from 0.2 to 1.0 in

0.2 steps. This series of graphs represents the catcher gap of, a two-

cavity klystron. In these cases, the debunching of the beam during one

cycle and the phase angle r 2 are optimum for energy extraction from the

beam. Velocity spread and efficiency increase as a2 (and therefore the

magnitude of the r-f field.) is increased. Velocities of Class 1 electrons

change little, but the amount of charge of this class of electrons decreases

continuously. Velocities and the amount of charge of Class 2 electrons

change drastically, and a split occurs in the bunch of Class 2 electrons.
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Class 3 electrons, on the other hand, fall out of phase and take energy from

the r-f field; consequently their velocities (and hence their kinetic energies)

increase.

Figure 22 shows, for a = 0.8 e) 77r/4, and 2 = -Tr/2, the
normalized exit current. id/I,, and the normalized exit velocity, vfd/V,,

as functions of the exit time wtd, when a2 is varied from 0.2 to 1.0 in

0.2 steps. This series of graphs represents the velocity-filter gap when

the electron-beam- at the entrance is assumed to be a spent beam. Since

the gap is long, overtaking within the gap has already occurred between

Class 1 electrons and Class 2 electrons. They appear as a single split

bunch. The debunching between the two classes of electrons increases as

a2 increases: (therefore the magnitude of the r-f field increases), where-

as Class 3 electrons pass through the gap almost unaffected. The interest-

ing feature of this series of graphs is that whereas Class 1 electrons are

being decelerated and are giving their energies to the r-f field, Class 2

electrons are accelerated and take energy from the r-f field. Velocity

spreads, output powers, and efficiencies are smaller than those of the cases

shown in, Figure 21, but the extent of the decrease in the maximum nor-

malized velocity is greater.

The behavior of the electron beam when it passes through the catcher

gap of a two-cavity klystron and through the velocity-filter gap is shown

in Figures 21 and 22 respectively. A better understanding can be obtained

if, in addition, one examines the changes in the incremental charge &q

and in the incremental kinetic energy AW of electrons in a specific range

of velocities. For this purpose bar graphs representing percentages of

aq and AW for ranges of velocities spanning ten, per cent of the d-c velo-
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city are used. Each ten-per-cent span will be termed a velocity-class in

this report. Electrons will be designated either by their velocity-class

or as: (1) slow electrons - those having velocities less than the d-c velo-

city, (2) fast electrons - those having velocities more than the d-c velo-

city.

Figure 23 shows the percentage of incremental charge Aq, and the

percentage of full incremental kinetic energy AW versus velocity-class at

the entrance to the second gap for the case of aI = 0.8. It is seen that the

total incremental charge is 49.264 per cent, the total incremental kinetic

energy is 28.303 per cent for slow electrons; and the total incremental

charge is 50.736 per cent, the total incremental kinetic energy is 71.697

per cent for fast electrons. It is also apparent that the charge is accumu-

lated mostly at the extremes, and that this accumulation of charge corre-

sponds to the existence of bunches in the beam at the entrance to the second

gap. On the other hand, since the kinetic energy is proportional to the

square of the velocity, the total kinetic energy of the fast electrons is

about 2.5 times the total kinetic energy of the slow electrons, whereas the

ratio of total c.harges is almost equal to one.

Figure 24 shows, for a1 = 0.8, the percentage of incremental charge

Aq versus the normalized velocity-class vd/vo, with a2 as a parameter,

at the exit of the catcher-gap selected (i. e., g - w/2 and r = -Tr/4).

In each case of this series of graphs except in Figure 24b, it is seen that

the total percentage of Aq is decreased for fast electrons, and that the

velocity spread is wider than that ?.t the entrance, although the maximum

velocity-class does not exceed 1.4. This obviously means that, on the

average, the ele-ctrons are decelerated and power is taken out from the
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electron beam. The main effect of increasing the r-,f field (i. e. , in-

creasing a2.) in this gap is to decelerate the electrons. In some velocity-

classes, there is an increase in the percentage of Aq when a 2 is increased.

This increase occurs because at the entrance to the gap, the electrons in

a velocity-class have different phases with respect to the r-f voltage across

the gap. Some of these electrons are acdelerated while others are decel-

erated. To visualize this phenomenon, one should examine the adjacent

velocity-classes. In Figure Z4(d), for example, both the percentages of

Aq for the velocity classes 1.1 and 1.2 show slight increases from the pre-

vious case. Examining the velocity-class 1.0 (i.e., 1.0 - 1.1), one can

see that the decrease in this class of electrons is greater than the increase

in the higher velocity-classes. In other words, a few of the electrons of

velocity-class 1.0 are accelerated while a greater number of them are de-

celerated.

Bar graphs representing the percentage of incremental kinetic energy

AW versus the normalized velocity-class, vd/vo, with a2 as a parameter

are depicted inFigure 2.5 -for the catcher gap selected. It is seen that as

a2 is increased, the total kinetic energy for the electron beam, as well as

for the fast electrons, decreases continuously. The-total kinetic energy for

the slow electrons first decreases and then increases as a 2 is increased.

This increase is not due to the acceleration of slow electrons, but is due

mainly to the increase in their total charge. The changes in the total kine-

tic energy of the slow electrons are, however, only a few per cent. Ob-

serving the same phenomenon as in Figure 24(d), one can see that the per-

centagesof .AW for the two velocity-classes 1.1 and 1.2 show slight increases,

but the decrease in the percentage of AW for the velocity-class 1.0 is greater
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than the increase in the higher velocity-classes.

Figure 26., which is similar to Figure 24, is for the velocity-filter

gap selected (i.e., 0g = 7=r/4, r 2 = -2r/Z), and for a = 0.8. The total

percentages of Aq for both the slow electrons and the fast electrons change

a few percent as a increases. The percentages of Aq of the velocity-

classes higher than 1.Z, however,, decrease appreciably, from 30 percent

to 7.80 per cent. In contrast to this, the percentages of Aq of the velocity-

classes lower than 0.7 increase from 18.75 per cent to 2.5.80 per cent.

Figure 27 shows the percentage of incremental kinetic energy ,iW

versus the normalized velocity-class vd/Vo, with a2 as a parameter, fow

the selected velocity-filter gap. The total percentages of AW both for the

electron beam and for the fast electrons decrease continuously, as expected

from Figure 26, but as a 2 is increased the total percentages for the slow

electrons first decrease and then increase. This increase is comparable to

the increase in the total percentage of Aq, since most of the change occurs

near the velocity-class 1.0.

An illustrative comparison between the catcher gap and the velocity-

filter gap is shown in Figure 28. One salient point is the occurrence of over-

taking within the gap in the case of the velocity-filter gap. The beam is also

bunched more in the velocity-filter gap than in the catcher gap. On the other

hand, the velocity spread of the electrons and hence the output power is larger

in the catcher gap.

A numerical comparison between the catcher gap and the velocity-

filter gap, selected as indicated, is given in Table IL. In the table there are

two columns for each case; the left column represents the percentage of

decrease in maximum velocity, and the right column the percentage of power
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Figure 28. (a) Normalized Exit Velocity v/v versus Exit Time wd

(b) Normalized Exit Current id/ versus Exit Time' wtd for

the Selected Catcher Gap (solid line) and for the Selected Velo-

city -Filter Gap (broken line).
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TABLE II.

Velocity Decreases and Efficiencies
for Catcher Gap and for Velocity-Filter ýGap

g=r/2 r 2 -. /4 9 = 7T//4 r2 -//2

Velocity Efficiency (%) Velocity Efficiency (%)
12 decrease (%) decrease(%)

0.2 1.881 5.356 2.128 2.778

0.4 3.278 11.981 4.255 5.883

0.6 4.363 17.,477 6.294 8.372

0.8 5.247 18.571 8.310 10.612

1.0 2.370 23.995 10.327 13.552

exchange. It is apparent that the decrease in maximum velocity is not pro-

portional to output power in the case of the catcher gap, as it appears to

be in the velocity-filter gap.

It can be concluded from the analysis of this chapter that at large

signal levels one cannot easily predict the operating parameters for a

catcher gap without calculating the kinetic energies at the entrance of the

gap and at the exit from it. In contrast to this, the operating parameters

for a velocity-filter gap can easily be predicted by the decrease in the maxi-

mum velocity at the exit from the gap. Efficiency of a velocity-filter gap

is usually lower than that of a catcher gap, since slow electrons, being out

of phase, are accelerated and take energy from the r-f field. This sug-

gests elimination of slow electrons in a spent beam by some means, pre-
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ferably electrostatic, before the beam is allowed to pass through a velocity-

filter gap.

rA i.
2. Loading Conditions of a Two-Gavity Klystron

It was previously mentioned that the existence of the assumed voltage

V across the second gap depends upon the physical realizability of the

circuit parameters. Once the operating parameters and the power exchange

for the second gap are known from the preceding analysis, the circuit para-

meters can.be determined.

The equivalent circuit for the second gap, is shown in Figure 29,

where GT represents the total conductance,and BT represents the total

susceptance of the cavity proper; i. e.,

GT G I + Gc + Gb (4.18)

BT B 1 + Bc + Bb (4.19)

where

Gl = load conductance referred to the cavity,

Gc = conductance representing the circuit loss in the cavity,

Gb = beam-loading conductance,

BI = load susceptance referredCto, the cavity., , ,.

B = susceptance representing the tuning of the cavity,
c

Bb = beam-loading susceptance,

I. = induced current at the cavity.

Figure Z9b shows the vector diagram for the fundamental component

of the entrance current ic and the voltage V 2 across the second gap.
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(o) (b)

Og2

+ -i

CIV2  G JBT
V2 TT

V2

Figure 29. (a) Equivalent Admittance Circuit for Second Gap, (b) Vector
Diagram for Fundamental Component of Entrance Current ic
and Voltage V 2 across Second Gap.

When the reference is shifted to the center of the gap, the phase angle y

between c 1 and V 2 represents the phase angle of the total admittance

shown in Figure 29a if the cavity has a high Q; that is, if no harmonics

are present in the induced current. The difference between the calculated

kinetic energies at the entrance and exit of the second gap represents the

power transferred to the load and the power dissipated in the cavity. One

can then write

Wk -Wk

P k entrance exit (4. 20)

G' V2

Pk 2 2 (4. 21)

where

G =G +G (4. 22)

-62-



One can thus determine the. load conductance G referred to the cavity

from Equations (4. 20) - (4. 22) and from measured values of Q and Q
0 x

of the cavity.

I-
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V. ANALYSIS OF SECOND DRIFT SPACE AND LAST CAVITY

In this chapter it is assumed that the operating characteristics of

the catcher gap and the velocity filter gap are as determined in the previous

chapter, Because of the complexity of obtaining analytical formulas for

the current and the velocity of the beam as functions of exit time, wttd, at

the exit from the second: gap, only computer solutions are sought for these

characteristics. Also, in the formulation of the problem, which follows,

the total current is not calculated; instead, current contributions from the

increments of different wtc times are traced along the tube. Thus the

physical phenomena taking place at any point along the tube are readily

understood. The analysis here is similar to that of ChapterI.V. The known

characteristics of the catcher gap will provide the initial conditions at the

entrance to the second drift space, and the known characteristics of the

velocity-filter gap will be used as those of the third gap.

A. COMPUTER PROBLEM

Since the second drift space is again assumed to be a field-free space,

the equation of motion is

=o .o(5.1)

The time at plane e (see Figure 30) can be expressed as

(A)t Wtz + 1 (5. Za)~e = od + d/V°

0 o 2 (5. 2b)

0
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I

Integrating Equation (5. 1) once and applying the boundary conditions at

t = tdo one obtains

e vd

-e - (5. 3)v v0 0

where Vd/V° is given numerically by the computer. Differentiating Equa-

tion (5. 2a) with respect to wtd, one obtains

W12 d Vd
dwt ev 0dte - 1 - o (5.4)

d wtd ( 2

From Equation (4. 8), one can derive

d Vc + 2L, sin (wtc + )(0 dw~tcV 20g9 a2
d Vd ... . .sin (Wtd + ) ;

dwtd d) td 20g

dwt (5.5)
c

First Gap Second Gap Third Gap

Plane a b c d e f

I I

Current 101 Ic 2
I v l I~i e

Velocity vIVb I Id Vl1
I I I I II 1 I I I

Time to tb tc td te t,

Figure 30. Schematic Diagram of the Combination of a Two-Cavity Klystron
and a Velocity-Filter Gap.
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A.d wtd/dwtc is given in Equation .(4. 1 ) and d(vcfvo)/dwtc' *in Equation

(4. 16). Using the principle of conservation of charge for the second drift

space, one obtains
i d

-e (5. 6 )
I°1 0

dI w dfe

EquationsJ(5. *).-'15.6) define the normalized current, i /Io, and the nor-

malized velocity, ve/vo, as functions of time) wte, corresponding to

specific wt times.C

Assuming a voltage V3 across the gap with a total phase r with

respect to the fundamental current at the entrance, one.. canWrit' the eqution

of motion for the third gap as
eV3

"e 3 sin (wt + r 3) (5. 7)

Integrating Equation (5. 7) twice, substituting initial conditions at t = te

and normalizing with respect to d-c velocity, one obtains

v a3
v + Tcos(wt 3)]

0 g3

and

Z = 20 cos(Wte + r 3) - (t - te)
0 0g3

+ awO [sin (It + ) -- sin (wt + r3)] (5. 9)2w0 I3) e-)

93

where a 3 is the ratio of the assumed voltage, V3 , to the d-c beam voltage

V , and the d-,c gap transit angle, E , is defined by
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e W 3  (5. 10)g3  V0

Applying boundary conditions at t = t to Equations ý(5.. 8) and (5. 9) and

multiplying the latter by w gives the following equations:

o [v L o (wt+rg v cos +e 3) (Wtf - Wte)
9g3 o 93

+ 3 [sin(wtf + r - sin(~te + -'3 )] (5. 11)20 z--3) - We+ ~
g3

Vf Ve + os(t + 3) - cos(t + (5. 12)

-= 0 70 2 f 3 Co we 3)]0 0 g

Equation (5. 11) is used to compute the exit time, wtf, and Equation (5. 12)

to compute the normalized exit velocity, vf/v.

The principle of conservation of charge for the third gap results in

i

f (5. 13)

e

The denominator of Equation (5. 13) is found by differentiating Equation

(5. 11) with respect to wt e; therefore

e 3 sin d e
(Wtf Wte) (Wte + r3) (Wtf wte) d v0

dwtf vo dwtg e 0

dwt v L 3
e e.e+ - os (wtf + r - cos +v 2e

o g3  (wte + 3 )] (5. 14)
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where

d ve\ dwtd d Vd\ dtd • o(.
dw Vwdwt d 0t dwt d 0/tdd (Atee (ed td

It should, be noted that since all the derivatives are single-valued,

the reversal of the derivatives at various stages of this analysis is valid,

This is a result of considering the components only, rather than the total
contributions of current from the ificrements of wt time. Total currents

c

and corresponding velocities can be plotted from computer data at any

major point along the tube.

B. VELOCITY FILTERING

Equations (5. Z) - (5. 6) for the second drift space and Equations

(5. 11.) -(5. 15) for the third gap were computed by the digital computer.

*Since the operating parameters of the catcher gap and the velocity-filter

gap were known, they were used as constants of the problem, with the

normalized second drift angle e0o as a variable.

One can see from Figure 28a that Class 1 electrons and Class 3

electrons have almost the same velocity, and they are almost Tr radians

apart. The drifting of the electron beam in the second drift space, there-

fore, will not alter their relative positions with respect to each other.

Consequently, in the third gap, with the known operating parameters for.

the velocity-filter gap, Class 3 electrons will be accelerated while Class 1

electrons are decelerated. This will result in a greater maximum nor-

malized velocity in the electron beam at the exit from the third gap than
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that at the exit from the second gap, which can be shown to be an improve-

ment so far as the intensities of the X-ray radiation are concerned, since

the amount of charge of Class 1 electrons is very much larger than that of

Class 3 electrons. These intensities are calculated and discussed in the

latter part of this chapter.

The computer data have shown that for the velocity-filter gap to be

most effective on Class 1 electrons,the optimum drift angle 0oz must be

91r/4. The normalized exit current, if/I , and the normalized exit velocity,

vf/vo, as functions of the exit time, wtf, are shown;ýor the optimum case

in Figure 31 where 0 9T/4, g3 = 77T/4, r 3 = -Tr/2, and a 3 = 1.0. Each

number on the curve shown in Figure 31a is the number assigned to. an elec-

tron at plane c (Figure 30), which is chosen as an initial condition for the

computer problem of Chapter IV. (The initial conditions at plane c for

a 1 = 0.8 are given in Appendix I.) It is apparent from Figure 31a that

several overtakings occur, some in the second drift space and some in the

third gap. These are due mainly to the large velocity spread in the electron

beam at the exit from the catcher gap. The important groups of electrons

are the decelerated Class 1 electrons and the accelerated Class 3 electrons.

The rest are used only to compute the total kinetic energy of the electron

beam. Bar graphs similar to those previously used are shown in Figure

32. If Figure 32a is compared to Figure 24e, it is apparent that, following

the velocity-filter gap, the two bunches existing in the electron beam shift

to lower velocities, but a small percentage of electrons (of Class 3) shift

to higher velocities. The velocity spread, therefore, is somewhat the

same as it was at the exit from the second gap. Both these shifts can again

be seen if Figure 32b is compared to Figure 25e. It should be noted that
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for slow electrons the total incremental kinetic energy, EAW, does not

show an increase, but for fast electrons it shows a definite decrease. this

is as expected, since the velocity-filter gap selected interacts primarily

with the fast electrons. The calculations 6f the total kinetic energy show

that the power is taken out and that the efficiency of the selected velocity-

filter gap is 5.368&per cent.

The power taken out from the velocity-filter gap represents a fur-

ther decreas~e in the total kinetic energy o.f the spent beam and hence a

decrease in the total X-ray radiation from the collector (the target). Be-

cause of unavoidable phases and velocities of Class 3 electrons, the hard-

ness of this radiation increases. In spite of this, the introduction of the

velocity-filter gap produces an improvement in X-ray radiation simply by

decelerating the highly bunched Class 1 electrons. In the following dis-

cussion the transmission of the continuous X-ray spectrum (Bremsstrahlung)

through a given shield will be considered, and the transmitted intensities

of various wavelengths, with and without the velocity-filter gap,, will be

compared.

The continuous X-ray spectrum has some interesting features. The

wavelength characteristics of the continuous spectrum are independentof

the material of the target, but are determined by the voltage applied to the

* tube (see Figure 33). It is seen from Figure 33 that for a definite voltage,

no radiation occurs up to a certain wavelength, (Xmnin). "Having passed

this wavelength, the intensity rises sharply to a maximum, and then grad-

uaily falls to a relatively low value. The intensity of the continuous spectrum

is dependent on the target material, the tube current and the applied voltage

as well as on the thickness of the target. 8, It was shown that the con-
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tinuous spectrum emitted by a thick target can be approximated by the con-

tinuous spectrum emitted by a thin target. The usual assumption is that the

total emission from a thick target is obtained by considering a summation

over each of the emissions from a series of thin targets one behind the other,

with the energy of the incident electrons decreasing for each succeeding

10thin target. In this discussion, however, we are not interested in the

absolute value of the intensity of the continuous spectrum at a specific wave-

length, but in the relative intensity transmitted through a given shield.

Qualitative relations of the various parameters will therefore suffice.

The equations for the minimum wavelength and the intensity of radia-

tion at a given wavelength in terms of.the voltage and the current of the elec-

tron beam are:

Xm k (5. 16)

11

$K-- K i . (5.17)

From Equations (5. 16) and (5. 17), one can write for two different wave-

lengths:

JX '= v, 1 (5. 18)

which can be transformed into

Xl - I-1 (5. 19)
JX2 Vz - W7 2
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since

V- ,2 (5. 0)
2 e

whe~re W1 represents the kinetic energy corresponding to iI and vI .

The transmission intensity varies exponentially with the mass ab-

sorption coefficient, 4/p-,, the density, p ,, and the thickness, x ,, of the

shield material, as,

-J o

-- = e (5. 21)J
0

The mass absorption coefficient depends on the shield material, and the

wavelength X., and is usually directly proportional to the density and in-

versely proportional to the Wavelength. Mass absorption coefficients are

determined experimentally and are given in the literature,

If a reference intensity at a given wavelength is chosen, then from

Equations (5. 19) and (5'. 21),' one has0!) PX 2
P, X Wn

e -, ne (5. 22)
Sref r e f) Wref

Since the present work is intended to apply to high-power klystrons,

a d-c beam voltage of 250 kv is chosen for the two-cavity klystron for

the following computations, It is seen from Figures (24e) and (25e) that

the maximum percentage of Aq and the maximum percentage of AW are

those of velocity-class 1.2,' The intensity of radiation from this velocity-

class of electrons, therefore, is taken as the reference intensity. The
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material of the shield is lead (p = 11.005 gr/cm 3) and: the thickness of it

is assumed to be such as to drop the reference intensity to 1/e of its in-

cident m~agnitude. The mass absorption coefficients for lead are plotted in

12Figure (34), in the wavelength range of interest. Equation (5. 21), then,

gives

J -. 4x 11.005 x 1
Jref e

x = .22717 cm.

This thickness of .22717 cm and Equation (5. 22.) are used in the rest of

the computations. The results are tabulated in Table III.

It is seen from Table III that the maximum transmitted intensity

with the velocity-filter gap is less than the maximum transmitted intensity

(the reference) without it.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Although this study was based on a very simple model, many inter-

esting and important results were obtained, which may serve as guides for

future investigations. Conclusions from this ballistic analysis can be grouped

under: (1) exact graphic analysis and its approximation, which includes

the firsat gap and the first drift space, and (2) computer solutions, which

includes the second gap, the second drift space, and the third gap.

1. Exact Graphic Analysis and Its Approximation

Exact graphic analysis reveals the physical relationships in the

first gap and in the drift space, but it is tedious and time consuming and

does not give the functional relationships between the various parameters.

Approximating the graphic method analytically, on the other hand, is de-

monstrated to be valid, the second-order method both approximating the

large-signal cases well and also giving analytical formulas that reveal

information about the harmonics.

In the first gap both velocity and curr-ent modulations are produced

during the passage of the electron be-am through the gap, and the transit

time plays an important role in these phenomena. The velocity modulation

is proportional to the depth of modulation al , but is inversely proportional

to the d-c gap transit angle 0 l. The difference between the minimum

velocity and d-c velocity is greater than the corresponding difference be-

tween the maximum velocity and the d-c velocity. Like the velocity modu-

lation, the .current modulation is also proportional to the depth of modulation,
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but it varies with the d-c g&p transit angle,first increasing and then de-

creasing. Both velocity- and current expressions contain harmonics at the

exit from the first gap, but this effect is more pronounced in the expression

for the current.

In the first drift space, density modulation is produced in a velocity-

modulated electron beam through drift action. The beam current develops

harmonics, and the amplitudes of harmoni'cs. are proportional to the depth

of modulation. The maximum value of the fundamental current is seen to

be kreater-than the value of 1.16 predicted by Webber.5 The point in the

drift space at which the maximum value of a harmonic occurs is inversely

proportional to the depth of modulation. As the depth of modulation is in-

creased, two bunches of electrons occur, one of fast electrons (Class 1)

and the other of slow electrons (Class 2). These results have been shown,

at least qualitatively, in the works of others. An additional phase angle

n is introduced into the current by the two independent components of
n

each harmonic. The velocity becomes more nonlinear at the end of the

drift space (overtaking occurs), but, its extreme values do not change.

2. Computer Solutions

The multivalued nature of transit times and the occurrence of over-

taking make it impossible to derive explicit analytical formulas for the

velocity and the current of the electron beam at the second gap and beyond;

thus one is limited to graphic analysis, i. e., the digital computer solutions.

One salient point in the formulation of the computer problems is consideration

of the components instead of the total contributions of current from the in-

crements of wt time. This causes all the time derivatives to be single-

valued.
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The graphic analysis revealed that one cannot easily predict the

operating parameters for a catcher-gap without calculating the kinetic

energies at the entrance of the gap and at the exit from it. It was seen

that the electron beam debunches as the operating parameters are adjusted
13

for maximum energy extraction. This is also shown by Webber. Opti-

mum operating parameters for the catcher-gap of a two-cavity klystron

were found to be eg0 = w/2 radians, r 2 = -_ii4 radian. The maximum

efficiency was 23.995 per cent for aI = 0.8 and a 2 = 1.0 with the selected

initial conditions of 8g 1 = 1.75 radians and eoi = 2T radians.

The operating parameters for a velocity-filter gap used as the second

gap were easily predicted by the decrease in tlie maximum velocity at the

exit from the gap. The optimum values were found to be eg, = 77r/4 radians

and i = -ir/2 radians. This gap, which is a rather long gap, showed

interaction with the fast electrons (Class 1). The electron beam became

more bunched in passing through the gap.

Even with the velocity-filter gap as a third gap in combination with

the two-cavity klystron, Class 3 electrons showed undesirable behavior.

This was a result of their being at the same velocity as Class 1 electrons

and almost half a cycle apart from them. The drifting of the electron beam

in the second drift space, therefore, did not alter their relative positions

with respect to each other. Consequently, in the third gap, with the known

operating parameters for the velocity-filter gap, Class 3 electrons were

accelerated while Class 1 electrons were decelerated. This resulted in a

greater maximum velocity at the exit from the third gap than that at the exit

from the catcher-gap. It was shown, however, that the inclusion of the

velocity-filter gap was an improvement so far as the intensities of the X-ray
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radiation transmitted through a given shield were concerned (see Table II),

since the amount of charge of Class 1 electrons was very much larger than

that of Class 3 electrons. To obtain the greatest decrease in the velocity

of Class 1 electrons, the optimum second drift length was found to be

9o2 = 9rr/4 radians. Under these operating conditions, an efficiency of

5.368 per cent was obtained for a3 = 1.0. Thus it was demonstrated that

the idea of interaction of a r-f gap with a group of bunched electrons

having a specific velocity-claAss is feasible.

B. RECOMMENDATIONS

'TOhe co:ubination of the two-cavity klystron and the velocity-filter

gap partly solves the problem of X-ray radiation resulting from the accelera-

tion of Class 3 electrons. Since their velocities are greater ,than those of

Class 1 electrons at the exit from the third gap, the relative positions of

these classes will alter in a third drift space.. In fact, an additional optimum

drift space can be introduced such that Class 1 electrons and Class 3 elec-

trons come to the same phase. Inclusion of an additional velocity-filter

gap at the end of this optimum drift space obviously will further decrease

the velocity of this new group of electrons and hence the X-ray radiation.

A number of alternating drift spaces and velocity-filter gaps may completely

reduce the radiation to safe levels.

The acceleration of Class 3 electrons can be avoided by tuning the

velocity-filter, gap to the second harmonic of the beam current. The phase

of the induced voltage across the gap can be adjusted such that the r-f

field interacts with both Class 1 electrons and Class 3 electrons in the

decelerating half cycle.
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Experimental verification of the results obtained in the analysis ofI 7
this report can be made on a device such as the dynamic beam tester. Al-

though there will be discrepancies between experimental and analytical re-

suits because of the limitations of the model, qualitative agreement between

the two is expected.

The model used in the above analysis was a simple one. The same

kind of analysis can be applied to a model that has gridless gaps, finite

size, and that is modified for space charge.
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ABSTRACT

This report describes the study of a particular radio-frequency inter-

ference problem. The objective of this work is to develop and verify by ex-

periment a design technique for a high-power klystron with reduced harmonic

output.

The work has three aspects: (1) an approach for a solution to a r-f

compatibility problem, (Z) the test system, and (3) measurements of spuri-

ous-output signals. The approach followed to develop the design information

is obtained by considering the higher-order modes present in the output cavity

and placing these mode resonances systematically at optimum frequencies.

The test system is constructed from a high-power radar transmitter trans-

mission line and includes a sampling system with a higher-order mode.

Measurements will be made on the second, third, and fourth harmonics of an

unmodified and a modified klystron to determine the effectiveness of reducing

the harmonically related spurious-output signals experimentally.
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I. INTRODUCTION

The problems arising from radio-frequency interference in a micro-

wave electromagnetic environment are manifold. These problems may ren-

der entire systems inoperative, produce erroneous system results, and

reduce the number of systems that can be used, since each system occupies

so much of the electromagnetic spectrum.

A. Description of the Radio-Frequency Compatibility Problem

Radio-frequency compatibility arises from a characteristic of electro-

magnetic signals; that is, each time a wanted signal is generated, an infinite

set of unwanted or spurious signals is also generated. This interference is

compounded, since each signal (desired or spurious) can mix with every

other signal (desired or spurious) in any nonlinear device to produce other

sets of spurious energy, etc. Obviously, if most of the signals in these

infinite sets of spi, ious outputs did not have zero amplitude, the useful elec-

tromagnetic spectrum would be even more limited than it is today. The re-

sultant of all of these signals, termed "noise, " is observed as part of the

ambient noise level of the electromagnetic environment. The products,

which are referred to as spurious output signals, are those signals whose

amplitude is well above the "noise floor. " These are the signals which

cause most of the problems, because they are the strongest, and they are

often overlooked during the design stage of any system.

A classic example of radio-frequency compatibility is reported by

Campbell. He describes interference in a radar-to-communication system.

In this type of system it is entirely possible that a spurious signal from the

radar will be much greater than the transmitted fundamental or carrier-
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frequency signal of the communication system.. Radar systems have spurious

output signals that will interfere not only with communications systems but

also with other radar systems. Considerable effort has gone into programs

designed to predict the level and type of radio-frequency compatibility that

may be expected in a given electromagnetic environment.
2

B. Need for Solution to R.-F Interference Problem

As higher-power emitters of radio-frequency energy are developed

and as receivers are designed to be more sensitive, the problems of radio-

frequency compatibility become more pronounced. If these problems were

solved, there would be room within the electromagnetic spectrum for larger

numbers of operational systems.

As the higher powers desired in output signals are achieved, the level

of the unwanted signals increases. There is, therefore, a greater need to

solve problems of radio-frequency interference in order to protect the lower-

power systems of today. The solution of such problems requires both ex-

tensive and high-level engineering effort.

II. APPROACH FOR, A SOLUTION TO A

R-F COMPATIBILITY PROBLEM

Progress toward solving an environmental problem such as radio fre-

quency compatibility is made only by pursuing realistic parts of the over-all

problem. There are high-power multicavity pulsed klystrons operating today

within the microwave region of the electromagnetic spectrum which generate

spurious output signals. The major spurious signals emitted from such klys-
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trons are harmonically related to the fundamental or desired output signal of

the klystrQn. It has been found that the variations in the level of the spuri-

ous output signals from klystrons which differ only in serial number* are

approximately equal to the variations in spurious signal level found between

tubes which differ in model number.2

The specific problem chosen, then, is the reduction of harmonically

related spurious output signals in high-power klystrons. Harmonics of the

fundamental signal are generated by velocity modulation, by which the klys-

tron operates. There are harmonic signals present on the klystron's elec-

tron beam as it interacts with the output cavity of the klystron, regardless

of whether the total input signal includes harmonics of the desired input

3frequency. (Klystrons have been used as frequency multipliers.,)

There are two approaches to the problems caused by spurious outputs.

One method is to suppress the spurious outputs after they have been gener-

ated in a nonlinear device and then coupled into the system's transmission

line. Theoretically this can be done by filters. From the system engineer's

viewpoint, this is a very inefficient method of solving the problem, since the

addition of filters gives no new information about the operating mechanism of

a klystron. Therefore this method does not make for progress in klystron

development. The other method is to improve the design procedure for the

devices that generate or amplify microwave signals. In doing this, the de-

sign procedure must be improved to treat the generation of spurious outputs

as well as the fundamental output in a high-power microwave tube that would

They are of the same type and model number.
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normally be used as the final or power-amplifier stage of a high-power

microwave radar transmitter. The work reported here deals with this

design procedure and is essentially a continuation of the work started by
4

L. A. MacKenzie.

In approaching the spurious output problem for microwave tubes one

can study either the active portion, or electron beam; or the passive portion, or

tube circuitry. This work approaches the problem from the passive stand-

point, although it is recognized that the active portion of the klystron under

study cannot be ignored. It is possible to design a model of the cavity with

its associated coupling mechanism mathematically. Thus, it is possible to

design control of the spurious output signals in the cavity, even though it is

heavily loaded. Thi's an be done because the impedance developed across

the interaction gap of the doubly re-entrant cavity can be considered as a

function of frequency. The cavity analysis technique used in this study is

the normal mode expansion of the given boundary-value problem, where both

the wave equation and Maxwell's equations are to be satisfied.

The design of klystron output cavities by the procedure that permits

analysis of effects removed frorm the fundamental must be done by a method

that does not make so many approximations that higher-order effects are

eliminated from the equations for cavity design. Boundary conditions will

be expressed as infinite series,where necessary in the solution of this

boundary value problem.

The structure to be considered for this initial study (Figure 1) is a

typical re-entrant, gridless-gap klystron cavity with an axially symmetric,

output-coupling iris that feeds a coaxial line. The structure will be con-

sidered to be lossless.
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The modal solution of the structure shown in Figure 1 for symmet-

rical modes may be expressed by TM field components, where the 'loll
onmn

subscript indicates symmetry in the e direction. As a first step in the

solution of this boundary value problem, a field will be assumed at the inter-

action gap (Figure 2) and also at the coupling iris (Figure 3) of the cavity:

jO 0 .< Z <1- d

jtd d
{EeJCAt 1- E - < Z < + (1)

r=a0

G 1 +d < Z (L

O a < r < c

E t(2)

Er = ° ~)e c < r < hrz=L r

0 h < r < b

where E and E are shown graphically in Figures 2 and 3 respectively.
z r

0 0

In order that the desired signal produced by the interaction of the

active (electron beam) portion and the passive (tube circuitry) portion of the

microwave tube be capable of reaching the system load (antenna), neither

E, nor Er can be identically zero. Thus for a symmetrical mode to bez r

capable of transferring a useful signal from the electron beam of the klystron

to the system load, the mode must be of the TM type not of the TE type.

If a mode of the TM type is considered, where it is known that
onm

neither E nor E are zero for the TM modes, then the field com-z r onm

ponent equations are:
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Am J (kr) + B(kr) sinz ze (3)Zr Ik--ArJ (r +B

E = 0 ,(4)

E = [Am J (kr) + Bm No (kr)] cospzz eJwt (5)

H = 0 (6)

H we [AJi (kr) +BmN,(kr)J cos Pz ejCt (7)E) = -zA l k)+B

H = 0 (8)

where

2 2 2

iPzý '1/2

Pz1 Pz (9)

1/

yo ='' j(4e)

The E-field boundary conditions that must be met by this structure are

E =0 (10)
r

z=o

0 a. r <c

"' z -- L 1 r 0° et j < c < r < h (2)

E I = b = 0 (11)

z-8-



0 0 •<z < /--d

= E e j•t 1. d < z < t. + d2 1
X' r = a Zo T( )t

0 .+ < z < L

For convenience in matching these boundary conditions, the structure

as shown in Figure I will be divided into two cavities. The resultant field

component equations for each of the cavities will then be added to give the

field solution of the original cavity. Since the principle of superposition is

valid for Maxwell's equations, it is possible (but certainly not necessary),

to follow this convenient procedure. The two cavities to be studied. in this

manner are shown in Figures 4 and 5.

The admittance functions of the interaction gap and the coupling gap

can be combined to form a set of two equations with two unknowns. Solutions

to this set of equations will yield the mode resonance frequency for the axially

symmetric modes. The first zero or solution to this set of equations will be

the desired fundamental mode resonance.

It should be pointed out that this analysis has assumed that the drift

tube of the interaction gap is of zero thickness and that the top plate of the

cavity, which contains the coupling gap, is also of zero thickness. The

transmission line effects of a finitely thick drift tube and a top plate of the

cavity have not been considered. They have been omitted because the amount

of phase shift introduced by them is very small at the mode resonances of

immediate interest. The usual normal mode expansion of the field compon-

ents of the cavity leads to a determination of the cavity admittances at the

interaction gap (electron beam to cavity) and the coupling gap (cavity to output

transmission line).
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The total admittance function is:

Y +Y =

A Zmsirl ZmwrSZwa D 1 (k 4 a) 16 La.D 1(k 4 a) cos 1 s -n 2-

k LD(ka) d2 m,. k4 Do (k 4 a)

4TInh Cosmsn k D

d2 pIn- b~p sinp% L

z a

5 5

0021F aX N (X 'a) [D (X c) D (X h)Ico0sp P sin 5o 0rn m o mj z
o(ka) . (

d pn 2O• s s [N ( )Z5X-) si Z

z 550am 0nm 5Zo

CO--I {Ja N~r~o(koa) - km=C) - eD~ m) a°[3s (12) "

y y m r=
m= i

Z~a JlD(koa) . '1k aL

+ j wX 1 a Loi - a D (12)

dJ• d ,ko-) ,E

ml ZLo ma)o(mbjinz5-

Yc + Yc=

- c~cl 1 X)- D( )+~- ci

2T"r cos o3 L(h -mc)IZ5
h-c P Z5 Inb sinpz5 L

-1 ) [Do(kihc) - D -(D+h)]h cos L+
+ h N ( mbj i - ) Dl('mh)

lIn L [5Z5 No(X a) - N(X b)sin5P L 4

C~c DI~xmc)Do (Xmh) + .. 1Xm
- ~-I D~rc m km

Idw [h(h - 1) Dl(k h)- c(c - 1) Dl( )D(k h) I. I Do(,k c)
S-'~~4 D k 4h)+k•,

"k4 L Do(k 4 a) In h
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r(-11 cos =m sin-r- czD1
mk 4 Do(k4 a) ln Dl(k 4 h) c(c-Z)D (k 4 c) - D (k 4 h)

m=l

+ - D(k-- -s (h-c)--
4 Z( c](-)n lnp

a a N(a c) D(ac) - D (a h)1

j 2 0 m 6  m 6  h(hl )D(a4 - . 'N(a6c-) - No(am6P) "'Dam

76 o m 6  0m6 .
m--l

-c(c-"•)D(a C),-. D (a h) (13)

m6 h]

III. TEST SYSTEM

The test of any analytical solution lies in experimental verification

of the method or technique used. Experimental verification of a solution

to the problem discussed here consists of a test set for measuring spurious-

output signals' and the support system required to drive the device under

test.

A. Requirements for Test System

The measurement test set must permit measurements to be made

under actual operating conditions, specifically at full power, for extrapola.-
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tions from reduced power may be of no value. The support system includes

a high-power modulator, a r-f signal source, a r-f driver, the necessary

protective circuits, and so forth. The entire support system must be de-

signed so that the results obtained may be traced to the device under test.

B. Test System for High-Power Klystron

The construction of the new output structure has been centered around

the four-cavity Varian VA-87 klystron. This klystron operates between 2. 8 -

2. 9 Gc/s with a peak power output at the fundamental of 2 Mw, at a beam

voltage of 115 kv and 1.3 Mw at 90 kv.

The new output structure, shown in Figure 6, consists of a new out-

put cavity, coaxial output transmission line, and a transition from the co-

axial line to the- normal S-band waveguide. A high-vacuum ball valve has

been placed in the drift space between the output cavity and the third cavity.

This valve permits the change of the output structure without letting the elect-

ron gun down to atmospheric pressure. This tube does have an oxide-coated

cathode.

Thus, the test instrument consists of the electron gun, the input cav-

ity, the second cavity, and the third cavity, which form a hot-test system.

This test instrument is capable of being used to test the performance of any

output structure under the meaningful conditions of full-rated power. In ad-

dition to the modifications made to the VA-87 at the output end of the tube, it

was also necessary to remove the electron gun and add a flange in the gun

- region in order that the cathode could be recoated as required. Also a vac-

uum pump connection has been made to the electron gun. The test tube is

continuously pumped from both the electron gun and output structure while

-13-



WAVE-GUIDE OUTPUT

-VACUUM WINDOW

COAX-TO -WAVE- GUIDE
LADAPTER ADJUSTABLE

I-" SHORT

COAXIAL
LINE

OUTPUT -COLLECTORCOUPLING
IRIS

OUTPUT
CAVITY

LAST DRI FT/

TUBE

Figure 6. New Output Structure for VA-87.
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tests are performed. The photograph of the test instrument portion of the

tube shown in Figure 7 was taken during construction.

The high-voltage power supply required to supply the beam voltage

to the VA-87 is assembled from an AN/FPS-6 power supply and modula-

tor. This unit with the pulse transformer supplies a 2-microsecond pulse

to the VA-87. The beam voltage is continuously variable from 0 - 115 kv.

The pulse repetition rate is continuously variable from 20.0 - 500 pps .

The r-f oscillator and driver are respectively a lighthouse tube in a

cavity (part of the AN/TS-155E/UP signal generator) and a small three-

cavity c-w space-charge-focused klystron (Sperry SAS-60). The r-f in-

put drive level to the VA-87 is continuously variable from 0 w to 6 w peak.

Optimum drive level is approximately 2. 5 w peak. The signal generator

unit contains the system trigger. In this system it is possible to have (1) the

r-f signal pulse centered inside the beam voltage pulse, (2) the r-f signal

pulse and beam. voltage pulse the same, and (3) the beam voltage pulse cen-

tered inside the r-f signal pulse.

Even after the design and fabrication of the output structure and the

construction of support system required for the VA-87, this test system for

spurious-output signals is by no means complete. The signal sanpling sys-

tem remains to be considered.

The signal sampling system must be capable of measuring signals

that are 20 or more decibels below the fundamental signal and far removed

from the fundamental. These signals are at two, three, and four times the

fundamental signal (fo), and are therefore propagated in the S-band wave
0

guide outside of the usual frequency range. This means that these signals

will propagate in more than one mode and that problems of the various coup-

ling coefficients to the various mode must be solved.
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High-Power Mode Samplinq "Second Harmonic
Multimode ---- Third Harmonic
AttenuoMier Section Fourth Harmonic

Figure 8. Signal-sampling Device.

The resulting spurious-output test facility is an unusually versatile

system and certainly capable of measuring the entire output of any high-

power S-band output structure placed on the VA-87 test vehicle. A block

diagram of the test facility is shown in Figure 9,

IV. MEASUREMENTS OF SPURIOUS-
OUTPUT SIGNALS PLANNED

The second, third, and fourth harmonics of the fundamental signal

will be measured on two different VA-87 tubes. The first or "before" tube

is just as it comes from the manufacturer, i. e. , no modifications. The

second or "after" tube is the VA-87 modified to serve as test instrument.

Only one output structure will be built and tested during this study. Future

programs could use this test facility to study other -output, structures. The

comparison of the spurious-output signals measured on the "before" and

"after" tubes of this study will present a direct measure of the improvement

in the reduction of spurious-output signal levels that results from the use of

this cavity design technique.
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Measurements are now in progress. This program will give specific

results obtained for the second, third, and fourth harmonics for the unmodi-

fied or "before" VA-87 and the modified or "after" VA-87. These signals

will be measured as a function of '-f input signal power level, r-f input

signal frequency, and beam voltage of the VA-87. A report of these results

will be published at the conclusion of the measurements. The report will

also include details of cavity design.
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